
IBM TPF Toolkit, Version 3.4

Getting started with IBM TPF Toolkit

Objectives
This tutorial provides a sample TPF 4.1 application and will guide you through the steps required to
bring this application into the TPF Toolkit V3.4.0 environment so that you can build, maintain, and
debug it using TPF Toolkit.
Note: This tutorial is intended as a general guide to getting started using TPF Toolkit V3.4.0. The
specific characteristics of your current environment might require set up and steps that are not
mentioned in this tutorial. Contact your IBM® Representative if you require extra assistance.

This tutorial only covers moving a TPF 4.1 application into TPF Toolkit V3.4.0. The result will be a TPF
4.1 application that can you can maintain, build, and debug using TPF Toolkit V3.4.0. Migrating TPF
4.1 applications to the new maketpf facility or to run on z/TPF is beyond the scope of this tutorial.

Time required
This tutorial should take approximately 60 minutes to complete.

Before you begin
This tutorial assumes the following:

• Some knowledge of Windows® XP or Vista Business or Enterprise, and how to run
applications on these platforms.

• Some knowledge of installing, setting up remote connections, and moving between
perspectives and views in the workbench.

• TPF Toolkit has been installed on your machine and a connection to the remote host (on
which you complete your development) has been established.

• The source files for the sample application reside on the z/OS® UNIX® System Services file
system.

Tip: Refer to the Appendix at the end of this tutorial for details on how to move from a traditional
dataset-based environment to z/OS UNIX.
Note: All of the source files for the sample TPF application reside in the extras\NewUserTutorial\
folder. This folder is located in C:\Program Files\IBM\TPF Toolkit V34 and contains the following
source files:

• tpfapp.cpp
• stringMethods.cpp
• stringMethods.hpp
• c$zstr.hpp
• zstral.asm
• zstr.mac

You can build this source on the z/OS UNIX environment using cxx commands to build the C++ source
and c89 commands to build Assembler source. Your z/OS UNIX environment also has several
environment variables that are created and set when you type the omvs command to enter the z/OS
UNIX environment. The values of these variables (along with the cxx and c89 commands) are required
to build your source.

The cxx and c89 command strings also contain parameter values or options that instruct the compiler
to build the source with specific characteristics. For example, the command string might contain
options to indicate if debug information should be included in the resulting modules.

The TPF DLL and DLM are built with CBLD build scripts to generate the JCL or by coding the JCL
directly. The JCL is submitted as a job on the MVS™ system. For the purposes of this tutorial, the
build scripts reside on z/OS UNIX in the same folder as the TPF application source code, in files with
.bsc and .jcl extensions. For the sample TPF application, these files are:

• ztad.bsc
• ztad.jcl
• ztam.bsc
• ztam.jcl

You can build the Loadset by coding the appropriate JCL statements and input control cards to create
the Loadset and submit the job. The JCL source is stored in the tpfapp.jcl file.
Note: All of these files reside in the extras\NewUserTutorial\ folder. This folder is located in
C:\Program Files\IBM\TPF Toolkit V34.

Description
The sample TPF application that you will move is a small application that outputs an EBCDIC string on
the console when it is run on TPF. This application contains:

• Two C/C++ modules (tpfapp.cpp and stringMethods.cpp).
• One Assembler module (ZSTR).

These modules are built into a TPF DLM and a TPF DLL, and then packaged into a Loadset.

The application consists of the following source files:
• tpfapp.cpp - The tpfapp C++ module that acts as the mainline program for the TPF

application. This module calls the getString and cleanString functions to retrieve, print, and
exit the string.

• stringMethods.cpp, stringMethods.hpp, c$zstr.hpp - The stringMethods C++ module
provides the getString and cleanString functions. These are wrapper functions that call the
ZSTR module, and then extract the results of those calls from register R1.

• zstral.asm, zstr.mac - The ZSTR module is an assembler module that provides the GETSTR
function. This function generates a string, places this string into register R1, and then into
CLNSTR which zeros out Register R1. GETSTR is invoked by the getString function and
CLNSTR is invoked by the cleanString function in the stringMethods C++ module.

When the application is built, TPF DLL ZTAD contains the stringMethods C++ module and a stub for
the ZSTR assembler module. DLM ZTAM contains the tpfapp module and a definition side deck input
definition for the ZTAD TPF DLL. The TPFAPP loadset contains the TPF DLL ZTAD, the DLM ZTAM,
and the ZSTR assembler module. It is transported to the TPF test system using a general dataset
(GDS).

Once the Loadset is loaded onto the TPF test system, complete the following steps to invoke the
Loadset:

1. Activate the Loadset using the following command:
ZOLDR ACT TPFAPP

2. Create a new user defined command to invoke the program by typing:
ZFMSG ADD ZTAPP PROG-ZTAM

3. Run the program using the user-defined command by typing:
ZTAPP

If the program runs successfully, output similar to this sample displays on the console:
String: E7E8E9BA2FE151B5F7D02DC1C2C3C4C5+

Overview
After you install TPF Toolkit and establish a connection to the remote host on which you complete your
development, you need to configure several items before you can develop this TPF application using
TPF Toolkit.
Tip: For more information on how to create remote connections to the remote hosts required for
development, see the Related concepts section below.

1. Set up the Remote Action header file.
2. Set up the target environment.
3. Set up the build and link options.
4. Set up the load options.
5. Create the target environment.

http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__remoteaction#gettingstartedwithtpftoolkit__remoteaction
http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__targetenv#gettingstartedwithtpftoolkit__targetenv
http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__buildandlink#gettingstartedwithtpftoolkit__buildandlink
http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__load#gettingstartedwithtpftoolkit__load
http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__createtargetenv#gettingstartedwithtpftoolkit__createtargetenv

6. Create a TPF project.
7. Create a TPF DLL build script.
8. Create a TPF DLM build script.
9. Create a TPF loadset generation script.
10. Build the application.

Part 1: Setting up the Remote Action header file
Remote actions are host z/OS UNIX commands or programs that are invoked from the TPF Toolkit
environment. They are used extensively in the development of TPF applications. Each compile,
assemble, module, and loadset generation is performed by a remote action.
These remote actions generate a script file that is transferred to the host z/OS UNIX subsystem and
executed. You must set the environment information and variables in the Remote Action header file of
the script before the action is run. The default header file (bbshtpf.bbs) resides in the TPFSHARE
directory.
Note: By default, the TPFSHARE directory is located in C:\Program Files\IBM\TPF Toolkit
V34\Config\.

For more information on how remote actions work in TPF Toolkit, see the Related concepts section
below.

If your TPF Toolkit Administrator has not set up this file, you must edit the file and ensure that the
environment variables are set to the same values that are contained in your current z/OS UNIX-based
development environment.
Tip: To obtain the current settings for your environment, type the following command from a z/OS
UNIX command line:
env

You must also set the STEPLIB environment variable to the values contained in the STEPLIB DD
statement in the tpfapp.jcl file.

Part 2: Setting up the target environment
After the header file for remote actions is set up, you must define your target environment. A target
environment in TPF Toolkit allows you to group properties that define a development or deployment
environment in your organization. You can capture different environments by creating target
environment definitions using the Target Environments preference pages. You can apply these target
environments to your TPF projects to customize the edit, build, load, and debug settings for these
projects.

Applications that are developed in the same environment and deployed on the same system have
similar properties; for example, compiler, assembler, prelinker, linker and loader. Many applications
have the same SYSLIB or OBJLIB. Target environments allow you to define these options in one
place, making your applications easier to maintain.

To determine how to define your target environments, examine your applications. If the properties of
your applications are not that similar, you might need to define a separate target environment for each
application. Since you are only bringing one application into TPF Toolkit in this tutorial, you only need
to look in one place for this information.

A target environment is defined as a set of options. You define your set of options first, and then
include these options in your target environment. For more information on target environments, see the
Related concepts section below.

Part 3: Setting up the build and link options
Global compile, assemble, prelinker, and linker options are specified for C, C++, Assembler, TPF
DLLs, and DLMs in the build and link options. When you submit a request to compile (that is, build) a

http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__createproj#gettingstartedwithtpftoolkit__createproj
http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__dll#gettingstartedwithtpftoolkit__dll
http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__dlm#gettingstartedwithtpftoolkit__dlm
http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__loadset#gettingstartedwithtpftoolkit__loadset
http://127.0.0.1:1785/help/topic/com.ibm.tpf.toolkit.doc/html/topics/gettingstartedwithtpftoolkit.html#gettingstartedwithtpftoolkit__build#gettingstartedwithtpftoolkit__build

source file, TPF Toolkit uses the values specified in the build and link options to compile the file. TPF
Toolkit is shipped with default build and link options already set.
Note: Since you might want to debug this sample application using the TPF Toolkit debugger, the
following example ensures that the correct build and link options are set to make tpfapp debuggable.
These values are preset at the TPF Toolkit or workspace level, which means that all projects created
in TPF Toolkit inherit these values. You can also specify default values for a specific TPF project or
individual source files.
To create build and link options for tpfapp, complete the following steps:

1. In the workbench, select Window > Preferences to open the Preferences window.
2. In the left navigation pane, double-click the TPF Toolkit node to open the tree of available

preference pages.
3. From the TPF Toolkit tree, double-click the Target Environments node to open the tree of

available preference pages.
4. Click Build and Link Options to open the Build and Link Options preference page.

5. Click New to open the New Build and Link Options dialog box.

6. In the Name field, type Build and Link Options for tpfapp.
7. From the drop-down list, select Default Build and Link Options with Debug Options to use

the initial settings from this set of options for the new set that you are creating.
8. Click OK to save your selections and close the dialog box. The name that you assigned to this

new set of build and link options is displayed in the list of available sets of build and link
options.

Now that you have created a set of build and link options (Build and Link Options for tpfapp), you can
set the following build and link options:

• Remote compile
• Remote assemble
• DLM
• DLL

To set the remote compile options, complete the following steps:
1. In the Build and Link Options preference page, click the Remote Compile tab.

2. Expand the Diagnostic section and select the following check boxes:

o TEST
o HOOK
o SYM
o BLOCK
o LINE
o PATH

3. Expand the Other section.
4. In the Common options field, type -Wc,LANGLVL'(EXTENDED)' to allow the $ character in

identifiers in the compile.
5. Click Apply to save your selections.

To set the remote assemble options, complete the following steps:
1. In the Build and Link Options preference page, click the Remote Assemble tab.

2. Ensure that the Generate ADATA and Generate Debug Info check boxes are selected.
3. In the Search Path field, type /u/myuser/tpfapp to specify the location of zstr.mac.
4. Click Apply to save your selections.

Next, set the DLM options for the target environment. Typically, the DLM options are values that are
global to your environment and rarely change. For example, OBJLIB and SYSLIB concatenations; this
information comes from the JCL used to build the DLM. You should store program specific information
in the corresponding build script file (.dlm, .dll, or .llm file).

To set the DLM options, complete the following steps:
1. In the Build and Link Options preference page, click the DLM tab.

2. Expand the DLM section:

o In the OBJLIB section, add ACP.OBJ.RLSEVP40.BSS.
o In the SYSLIB section, add ACP.CLIB.RLSEVP40.BSS and

ACP.STUB.RLSEVP40.BSS.
o In the Prelink Options field, type MAP.
o In the Link Options field, type AMODE=31 RMODE=ANY LIST XREF MAP.

3. Expand the Definition Side Deck Concatenation section. In the Definition Side Deck
Concatenation section, add ACP.IMPORTS.RLSEVP40.BSS.
Note: The values for each of these options are derived from the JCL that was used to create
the ZTAM DLM:

o The OBJLIB value comes from the OBJLIB DD statement.
o The SYSLIB values come from the SYSLIB DD statement.
o The Definition Side Deck Concatenation value comes from the DSD DD statement.

Not all of the values in the JCL are used. The MYUSER.TPFAPP.LK1 dataset specified in the
SYSLMOD DD statement and the MYUSER.TPFAPP.EXP1 dataset specified in the DSD DD
statement are not specified since they do not apply to all applications using this target
environment. These options will be specified later.

4. Click Apply to save your selections.
To set the DLL options, complete the following steps:

1. In the Build and Link Options preference page, click the DLL tab.

2. Expand the TPF DLL section:

o In the OBJLIB section, add ACP.OBJ.RLSEVP40.BSS.
o In the SYSLIB section, add ACP.CLIB.RLSEVP40.BSS and

ACP.STUB.RLSEVP40.BSS.
o In the Prelink Options field, type MAP.
o In the Link Options field, type AMODE=31 RMODE=ANY LIST XREF MAP.

3. Expand the Definition Side Deck Concatenation section. In the Definition Side Deck
Concatenation section, add ACP.IMPORTS.RLSEVP40.BSS.
Note: The values for each of these options are derived from the JCL that was used to create
the ZTAD DLL:

o The OBJLIB value comes from the OBJLIB DD statement.
o The SYSLIB values come from the SYSLIB DD statement.
o The Definition Side Deck Concatenation value comes from the DSD DD statement.

Not all of the values in the JCL are used. The MYUSER.TPFAPP.LK1 dataset specified in the
SYSLMOD DD statement and the MYUSER.TPFAPP.EXP1 dataset specified in the
SYSDEFSD DD statement are not specified since they do not apply to all TPF DLLs using this
target environment. To capture default options that generally apply to all TPF DLLs for an
application, create a set of build and link options.

4. Click Apply to save your selections.

Part 4: Setting up the load options
The load options are global options used in the generation and transfer of loadsets to your TPF test
system. The values used for these options are derived from the loadset generation JCL script,
tpfapp.jcl.
To create load options for tpfapp, complete the following steps:

1. In the left navigation pane of the Preferences window, double-click the TPF Toolkit node to
open the tree of available preference pages.

2. From the TPF Toolkit tree, double-click the Target Environments node to open the tree of
available preference pages.

3. Click Load Options to open the Load Options preference page.

4. Click New to open the New Load Options dialog box.

5. In the Name field, type Load Options for tpfapp.
6. From the drop-down list, select Default Load Options for TPF 4.1 to use the initial settings

from this set of options for the new set that you are creating.
7. Click OK to save your selections and close the dialog box. The name that you assigned to this

new set of load options is displayed in the list of available sets of load options.
Now that you have created a set of load options (Load Options for tpfapp), you can specify the
following load options:

• Load Attributes
• Loadset

To set the Load Attributes options, complete the following steps:
1. In the Load Options preference page, click the Load Attributes tab.

2. To specify the load attributes:

o In the SYSID field, type BSS.
o In the SALVERS field, type 40.
o In the PATVERS field, type NONE.

o In the SAL Table PDS field, type ACP.SAL.RLSEVP40.BSS.
3. To specify the GDS attributes, type 40 in the Primary quantity field.

Note: The values for all other default options are equivalent to the following statements in
tpfapp.jcl:

o SYSID, SALVERS, and PATVERS come from the like-named control statements.
o SAL Table PDS comes from the SALTB DD statement.
o Device, Disposition, Space, Record format, Record length, and Block size come from

the UNIT, DISP, SPACE, RECFM, LRECL, and BLKSIZE parameters specified in the
OUTPUT DD statement.

4. Click Apply to save your selections.
To set the Loadset options, complete the following steps:

1. Click the Loadset tab.

2. In the OBJLIB section, add ACP.LINK.RLSEVP40.BSS.
3. In the Load Method section, specify the GDS to which the loadset should be generated:

a. In the Output GDS field, type LDR.MYUSER.
b. In the Volume field, type LDR.

Note: The values for each of these options are derived from the following statements in
tpfapp.jcl:

o OBJLIB comes from the OBJLIB DD statement.
o Output GDS and Volume come from the DSN and VOLUME parameters specified in

the OUTPUT DD statement.
Much of the information in tpfapp.jcl is application specific and will be specified when you
define the TPF project for the sample application.

4. Click Apply to save your selections.

You do not need to define any other options for your target environment. The default options shipped
with TPF Toolkit are used. You can now create your target environment.

Part 5: Creating the target environment
1. In the left navigation pane of the Preferences window, double-click the TPF Toolkit node to

open the tree of available preference pages.
2. From the TPF Toolkit tree, double-click the Target Environments node to open the tree of

available preference pages.
3. Click Target Environments to open the Target Environments preference page.

4. Click New to open the New Target Environments dialog box.

5. In the Name field, type Target Environment for tpfapp.
6. From the drop-down list, select Default Target Environment for TPF 4.1 to use the initial

settings from this target environment for the new one that you are creating.
7. Click OK to save your selections. The New Target Environment dialog box opens.

8. In the IP address field, type the IP address of the system that you will use to test your

application.
9. Click the TPF 4.1 radio button.
10. From the PUT level drop-down list, select the PUT level that your test system is running at.
11. Expand the Build and Link Options section and select the Build and Link Options for

tpfapp check box.
12. Expand the Load Options section and select the Load Options for tpfapp check box.
13. Click OK to create your new target environment definition and close the dialog box. The target

environment that you created is added to the list of available target environments in the
Settings for the selected target environment drop-down list.

14. Click OK to close the Preferences window.

Part 6: Creating a TPF project
Once you define your target environment to capture the development and deployment environment for
your application, you can create a TPF project. A TPF project is used to group resources (such as files
or folders) from one or more systems that you need to perform a task. A TPF project can mean
different things in different environments. For example, a TPF project can contain:

• Everything that you need to develop a TPF application.
• A version of a TPF application.
• An application that targets a specific TPF system.

TPF projects can also contain subprojects. You can use a TPF subproject to logically group different
components of an application in TPF Toolkit. For the purposes of this tutorial, the TPF project
represents the entire application, as it is too small to break up into components.
To create a TPF project, complete the following steps:

1. Switch to the TPF Toolkit perspective.
2. In the TPF Project Navigator view, right-click anywhere in the view and select New > Project

from the pop-up menu to open the New TPF Project Wizard.

3. In the Project name field, type the name of the new project. For example, tpfapp.
4. In the Project Local Directory section, select the Use default check box to specify that you

want to create the project in your local workspace.
5. In the Working Directory section, click Browse to browse for the location of your remote

system.
6. Expand the tree to locate the /u/myuser/tpfapp folder where the sample TPF application

currently resides, select this folder, and then click OK.
7. In the Target Environments section, select the Target Environment for tpfapp check box.
8. Click Next to proceed to the New TPF Filter page to create a filter for the TPF project. Filters

allow you to populate the project with files and folders by grouping filter strings together to
logically group similar resources.

9. In the Filter Name field, type Filter, and then click Next to proceed to the New Filter String
page to populate the filter.

10. In the New Filter String page, click Add to open the TPF Toolkit Browse Dialog.
11. Select the /u/myuser/tpfapp folder to create a filter string that contains all of the files in the

tpfapp application.
12. Click Finish to create the new project with the resources that you specified in the filter strings

and close the New TPF Project Wizard.
The tpfapp project is displayed in the TPF Project Navigator view. When you expand the tpfapp project
and its filters, all of the files contained in the tpfapp application are displayed.

Part 7: Creating a TPF DLL build script
TPF Toolkit creates a special file to store the information needed to generate the TPF Dynamic Link
Library (DLL) object required to create TPF applications.
The definition for a TPF DLL is stored in a file with the .dll extension.
Note: These are not the same build scripts as those used by the CBLD tool.

You need to create a TPF DLL build script file (.dll file) for the ZTAD TPF DLL for the tpfapp
application. You can use the CBLD build scripts as input to the creation process. TPF Toolkit parses
these files and uses the information to create the .dll file.

To create the ZTAD.dll file, complete the following steps:
1. Switch to the TPF Toolkit perspective.
2. In the TPF Project Navigator view, double-click the tpfapp project to expand it, and then

double-click the Filter to display all of the files in the tpfapp project.
3. Right-click ztad.bsc to open the pop-up menu.
4. Select Create build script to open the New DLL Build Script Wizard.

5. Since the inputs specified in the ztad.bsc build script file reside on z/OS UNIX, you must

specify the z/OS UNIX folder in which these inputs reside. In the Inputs path field, type
/u/myuser/tpfapp. This path is prefixed to all of the inputs mentioned in the CBLD build script.

6. Clear the Convert inputs to lower case check box since the ztad.bsc file already has the
inputs specified in the correct case.

7. In the Object file type field, type o as the file name extension for the inputs on z/OS UNIX.
This file name extension is appended to each input.

8. Click Finish to create the ZTAD.dll.
The ZTAD.dll build script file is displayed in the TPF Project Navigator view. Now you can set the
properties for this file. To set the properties for the ZTAD.dll file, complete the following steps:

1. In the TPF Project Navigator view, right-click the ZTAD.dll file to open the pop-up menu.
2. Select Properties to open the Properties dialog box.

You need to populate some of the information in this properties page. This information is
contained in the JCL that you did not specify in the set of build and link options in the target
environment.

3. In the Definition Side-Deck field, type /u/myuser/tpfapp. This is the name of the z/OS UNIX
folder into which the exported functions and variables are generated.

4. In the Output Location field, type MYUSER.TPFAPP.LK1 to specify the dataset that contains
the built DLL. This dataset originates from the SYSLMOD DD statement.

5. The reference to the Assembler module ZSTR in this DLL is a stub. Since the ztad.bsc build
script file does not make a distinction between real objects and stubs, the stub definition is
converted to an input. To correct this stub definition in the Inputs list, select ZSTR.o, and then
click Remove to remove the input from the list.

6. In the STUBS section, type ZSTR, and then click Add to add ZSTR to the list of stubs.
7. Click OK to save your changes and complete the creation of the ZTAD.dll build script file

based on information from ztad.bsc.

Part 8: Creating a TPF DLM build script

TPF Toolkit creates a special file to store the information needed to generate the Dynamic Load
Module (DLM) object required to create TPF applications.
The definition for a DLM is stored in a file with the .dlm extension.
Note: These are not the same build scripts as those used by the CBLD tool.

You need to create a TPF DLM build script file (.dlm file) for the ZTAM DLM for the tpfapp application.
You can use the CBLD build scripts as input to the creation process. TPF Toolkit parses these files
and uses the information to create the .dlm files.

To create the ZTAM.dlm file, complete the following steps:
1. Switch to the TPF Toolkit perspective.
2. In the TPF Project Navigator view, double-click the tpfapp project to expand it, and then

double-click the Filter to display all of the files in the tpfapp project.
3. Right-click ztam.bsc to open the pop-up menu.
4. Select Create build script to open the New DLM Build Script Wizard.

5. Since the inputs specified in the ztam.bsc build script file reside on z/OS UNIX, you must

specify the z/OS UNIX folder in which these inputs reside. In the Inputs path field, type
/u/myuser/tpfapp. This path is prefixed to all of the inputs mentioned in the CBLD build script.

6. Select the Convert inputs to lower case check box to convert inputs in the ztam.bsc file to
lower case.

7. In the Object file type field, type o as the file name extension for the inputs on z/OS UNIX.
This file name extension is appended to each input.

8. Click Finish to create the ZTAM.dlm.
The ZTAM.dlm build script file is displayed in the TPF Project Navigator view. Now you can set the
properties for this file. To set the properties for the ZTAM.dlm file, complete the following steps:

1. In the TPF Project Navigator view, right-click the ZTAM.dlm file to open the pop-up menu.
2. Select Properties to open the Properties dialog box.

You need to populate some of the information in this properties page. This information is
contained in the JCL that you did not specify in the set of build and link options in the target
environment.

3. In the Output Location field, type MYUSER.TPFAPP.LK1 to specify the dataset that contains
the built DLM. This dataset originates from the SYSLMOD DD statement.

4. Click OK to save your changes and complete the creation of the ZTAM.dlm build script file
based on information from ztam.bsc.

Part 9: Creating a TPF loadset generation script
The loadset was originally generated by submitting a JCL script that combined all of the parts of the
application and output it to a general dataset (GDS). The tpfapp application used tpfapp.jcl to create
that loadset.

TPF Toolkit requires that you create a loadset generation script to create the loadset for the
application. This file resides in the TPF project folder and has a .lset extension. All of the information

required to create the loadset generation script comes the JCL script that you originally used to create
a loadset.

You already specified some of the general information for creating loadsets in the Load Options
preference page and included it in your target environment definition. The loadset generation script
that you create will contain additional information that is specific to this loadset. When you are ready to
generate the loadset, you can select the appropriate set of load options that you want to use to provide
the general options. The information in both the loadset generation script (.lset file) and the selected
load options are used to generate the loadset.

To create a loadset generation script, complete the following steps:
1. Switch to the TPF Toolkit perspective.
2. In the TPF Project Navigator view, right-click anywhere in the view to open the pop-up menu.
3. Select New > Loadset Generation Script to open the New Loadset Generation Script

Wizard.

4. From the tree of available resources, select the /u/myuser/tpfapp folder. This is the folder for
the tpfapp application.

5. In the File Name field, type tpfapp.
Note: If you omit the file name extension, the .lset file name extension is automatically
appended to the file name.

6. Click Next to proceed to the TPF Project Filter page.
7. Select Filter as the TPF project filter that you want the new Loadset build script to appear in.
8. Click Next to proceed to the Loadset Generation Script Details page.

9. From the Type drop-down list, select OLDR.
10. In the OBJLIB section, add the following values:

o MYUSER.TPFAPP.LK1
o MYUSER.TPFAPP.OBJ

These values come from the OBJLIB DD statement in tpfapp.jcl.

11. In the LOADMOD section, add MYUSER.TPFAPP.LK1. This value comes from the
LOADMOD DD statement in tpfapp.jcl.

12. Use the Loadset section to specify the loadset modules defined in the control statements in
tpfapp.jcl. In the Loadsets field, type TPFAPP to specify the name of your loadset, and then
click Add to add the TPFAPP loadset to the list of loadsets.

13. From the list of loadsets, select TPFAPP to specify the loaddeck, and then click Inputs to
open the Loadset Inputs dialog box.

14. To add modules to the TPFAPP loadset, click Add to open the Add Inputs dialog box.
15. In the PDS Members field, type ZTAD40, ZTAM40 and then click OK to add ZTAD40 and

ZTAM40 to the loadset.
Note: The ZTAD40 DLL is generated into the MYUSER.TPFAPP.LK1 dataset and the
ZTAD40 DLM is generated into the MYUSER.TPFAPP.LK1 dataset.

16. Click Add. In the Files field, type /u/myuser/tpfapp/zstral.o or click Browse to browse for the
location of the file.
Note: The ZSTRAL assembler module is now generated into the /u/myuser/tpfapp z/OS UNIX
folder, to the zstral.o file.

17. Click OK to add ZSTRAL to the loadset.

18. In the Loadset Inputs dialog box, click OK to save your changes and close the dialog box.
19. Click the GDS radio button to specify that you want to write the loadset to a GDS.
20. In the HFS ADATA Search Path field, type /u/myuser/tpfapp. The assembler ADATA file is

generated into this z/OS UNIX folder.
Note: The ADATA file must be included in the loadset to debug the application.

21. Click Finish to create the loadset generation script.
The following files are displayed in the tpfapp project:

• tpfapp.lset - the new loadset generation script.
• tpfapp.data - contains the loaddeck information.

Part 10: Building the sample TPF application
Now that you have moved the application to TPF, you can set up the tpfapp project to build the tpfapp
application. This is a two step process:

1. Set up the build list for the tpfapp project. The project build list is a list of files and build targets
to be processed when a TPF project is built.

2. Build the tpfapp project.
To set up the build list for the tpfapp project, complete the following steps:

1. Switch to the TPF Toolkit perspective.
2. In the TPF Project Navigator view, right-click the tpfapp project, and then select Properties

from the pop-up menu to open the Properties dialog box.
3. In the left navigation pane, select Build List to open the Build List properties page.

4. Click Reload from Project to populate the build list with all of the files in the project that can

be built. These include *.s, *.asm, *.c, *.cpp, *.llm, *.dll, *.dlm, and *.lset files.
5. The order of the files in the build list might need to be modified. The .asm and .cpp files must

be built first, then the ZTAD40 DLL, ZTAM40 DLM, and finally the TPFAPP loadset. To move
these files into the correct order, select the file that you want to move, and then click Move Up
or Move Down to change the position of the file within the build list.
Note: Your final list should appear in the following order:

o zstral.asm
o stringMethods.cpp
o tpfapp.cpp
o ztad.dll
o ztam.dlm
o tpfapp.lset

The default build action associated with each file type in the Default Build Actions preference
page is assigned to each file in the build list.

6. Click OK to save your settings and close the Change Build Action dialog box.
7. Click Apply to save your settings, and then OK to close the Properties dialog box.

You are now ready to build the tpfapp project. To build the project, complete the following steps:
1. Switch to the TPF Toolkit perspective.
2. In the TPF Project Navigator view, right-click the tpfapp project to open the pop-up menu.
3. Select Build to open the Build Options dialog box.

4. From the Build and Link Options drop-down list, select the set of Build and Link Options for

tpfapp.
5. From the Load Options drop-down list, select the set of Load Options for tpfapp.
6. Click OK to start the build.

Each item in the build list is built individually using the associated build action. The build items are built
in the order in which they appear in the build list.

The set of build and link options that you specified for the tpfapp project are used to build the project.
For example, the compile and assemble options are passed to the compiler to build your programs, as
specified. The DLM and DLL options are combined with the information in the individual build script
files (.dlm and .dll files) to link your programs. Finally, the default load options associated with the
target environment for the tpfapp project are used to provide the general options for generating the
loadset, as defined by the loadset generation script (.lset file).

You can view the build progress of each item in the Progress view. Build messages are displayed in
the Remote Console view and compile errors are displayed in the Remote Error List.

If a C/C++ or Assembler program item fails to build, you can select the result in the Progress view. You
can filter the errors in the Remote Error List to only display errors associated with that build. Right-click
any errors in the Remote Error List to open the associated source file in the editor, at the location of
the error.

Correct all of the errors. Once you correct the errors, you can rebuild the project using the Build action.
After a successful build, the tpfapp application loadset is in the specified GDS, ready to load onto the
TPF system to be run or debugged.
Tip: For more information on debugging a TPF application, see the Related topics section below.

Summary
In this tutorial, you have learned how to bring a sample TPF 4.1 application into the TPF Toolkit V3.4.0
environment so that you can build, maintain, and debug it using TPF Toolkit.

Appendix A: Moving files from datasets to z/OS UNIX System Services
Typically, TPF application development done in a z/OS environment uses several partitioned datasets
(PDS). Each PDS is used to store a different source type – one for assembler source, another for C++
source, and another for JCL scripts. Each member of the PDS for that type is source for a different
program or module.

z/OS UNIX is a POSIX-based environment. Files are stored in directories; directories can also contain
other directories. This type of organization is called a Hierarchical File System (HFS) and starts with a
single root directory that contains all of the other files and directories on the system. Typically, this
directory is called /.

Each user on z/OS UNIX is given their own branch of the directory tree to work in, typically under the
directory /u. Their home directory is typically the same name as their user ID, for example, myuser.
The home directory for myuser is /u/myuser. TPF Toolkit only supports development in the z/OS UNIX
environment.

You should structure your application so that all of the files for the application are rooted under one
directory. You can create subdirectories within that root application directory to further categorize your
source files by component or by file type.

For example, you can create a subdirectory called src that contains all of the source files for your
application and a directory called objs that contains all of the include files (or header files) for your
application. For the tpfapp application used in this tutorial, create a folder called tpfapp in the myuser
directory. Since the sample application is a small application with only a few source files, you do not
need to create any subdirectories.

The type of a source file in a PDS environment is determined by the PDS it resides in. z/OS UNIX uses
an extension to determine the type of the file. The extension is typically three characters in length and
is appended to the file name using the period (.) character. For example, an assembler source file in
the tpfapp application that resides in a PDS is referenced as MYUSER.SOURCE.ASM(ZSTRAL).
When this assembler source file is moved to z/OS UNIX, it is referenced as
/u/myuser/tpfapp/zstral.asm.

You can physically copy the source from a PDS member to a z/OS UNIX directory using the TSO
OPUT command. For example, to copy the ZSTRAL assembler source to z/OS UNIX, type the
following command:
OPUT SOURCE.ASM(ZSTRAL) '/u/myuser/tpfapp/zstral.asm'

Note: For more information on the OPUT command, see the TSO command help.

Once all of the source files required for the application are copied to a z/OS UNIX directory, you can
begin to use TPF Toolkit to develop, build, and debug your TPF application.

	Getting started with IBM TPF Toolkit
	Objectives
	Time required
	Before you begin
	Description
	Overview
	Part 1: Setting up the Remote Action header file
	Part 2: Setting up the target environment
	Part 3: Setting up the build and link options
	Part 4: Setting up the load options
	Part 5: Creating the target environment
	Part 6: Creating a TPF project
	Part 7: Creating a TPF DLL build script
	Part 8: Creating a TPF DLM build script
	Part 9: Creating a TPF loadset generation script
	Part 10: Building the sample TPF application
	Summary
	Appendix A: Moving files from datasets to z/OS UNIX System Services

