
TXSeriesV6_JAVA.ppt Page 1 of 18

®

IBM Software Group

© 2006 IBM Corporation

Updated October 25, 2006

IBM® TXSeries ® for Multiplatforms V6

Introduction to TXSeries server programming
in Java™

This presentation will introduce you to Java server programming, one of the object oriented
programming languages supported by TXSeries

TXSeriesV6_JAVA.ppt Page 2 of 18

IBM Software Group

2

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

Goals

�Provide an overview of object-oriented
programming under TXSeries

�Understand the behavior of Java virtual machine
under TXSeries

�Performance considerations

�Provide an overview of JCICS services

� JCICS class hierarchy

The goal of this presentation is to provide an overview of object-oriented programming under
TXSeries, and help you understand the behavior of Java Virtual machine, also referred to as
JVM under TXSeries. It will outline certain performance considerations and provide an overview
of JCICS servers and the class hierarchy.

TXSeriesV6_JAVA.ppt Page 3 of 18

IBM Software Group

3

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

Agenda

� Introduction to Object oriented programming under
TXSeries
�Introduction to Server programming in Java

� TXSeries and Java virtual machine

� Performance considerations

� JCICS
�What is JCICS?

�JCICS Services

�JCICS Programming considerations

�JCICS class hierarchy

The agenda is to first introduce the topic of object oriented programming and TXSeries Java
server programming. JCICS will also be defined and described.

TXSeriesV6_JAVA.ppt Page 4 of 18

IBM Software Group

4

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

Introduction to object oriented Introduction to object oriented
programming under TXSeriesprogramming under TXSeries

Section

This section covers support provided by TXSeries for writing server applications using Java, and
outline some performance considerations.

TXSeriesV6_JAVA.ppt Page 5 of 18

IBM Software Group

5

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

Object oriented programming under TXSeries

� TXSeries provides the flexibility of writing server
programs using object-oriented programming style.
With this support, you can:
�Perceive TXSeries services as objects

�Reusable classes

�Create applications using object-oriented architecture.

�Leverage use of existing application classes and tools
provided by the language environment.

TXSeries provides the flexibility of writing server programs in both modular and object-oriented
programming languages. With object-oriented programming, programmers can perceive
TXSeries services as objects. TXSeries provides support for object-oriented programming in
C++ and Java, allowing you to:

Perceive TXSeries services as objects.

Design and create reusable classes that can be used in and outside the TXSeries environment.

Design and create new modern TXSeries server applications using an object-oriented
architecture. and

Effectively use the strengths of various existing application classes and tools that are provided
with the object-oriented language.

TXSeriesV6_JAVA.ppt Page 6 of 18

IBM Software Group

6

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

Server programming in Java - Introduction

� Java language platform:
�system-independent

�object-oriented

�designed to be portable and architecture neutral.

�Programmers use classes or objects instead of
coding EXEC CICS statements to access a
TXSeries service

� TXSeries provides various functional classes for
programmers to perform relevant TXSeries
functions

Today Java is perceived as a popular system-independent object-oriented language platform.
The Java language is designed to be portable

and architecture-neutral, and the byte code generated by compilation requires a machine-
specific interpreter for execution. TXSeries provides support to run Java server applications in a
transactional environment and provides a range of facilities to access TXSeries services as
objects in Java. Thus, Java programming skills can be effectively used in writing modern server
applications.

Using Java for writing TXSeries server applications does not require programmers to code or to
know about EXEC CICS statements. Instead, they

use classes or objects that are supplied by TXSeries to access a service. This method of
accessing the services eliminates the need for translating the server Java program. TXSeries
provides various functional classes for programmers to perform relevant TXSeries functions. In
the next section, various functional classes will be discussed.

TXSeriesV6_JAVA.ppt Page 7 of 18

IBM Software Group

7

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

TXSeries and Java Virtual Machine

cicsas 101

jvm

cicsas 102

jvm

cicsas 103

jvm

cicsas 103

jvm
Other CICS
processes

N
etw

ork

CICS®

clients

CICS
clients

TXSeries region

As with any system, it is important to understand how TXSeries runs your Java program in a
transactional environment. TXSeries uses the Java Virtual Machine (JVM) runtime support to
run your Java server applications. This section describes the fundamentals of how TXSeries
uses the Java runtime to run your applications.

As illustrated in the picture, TXSeries initializes the JVM on the application server process that
runs your Java server application. The JVM are

loaded and initialized only if a request comes to an application server that requires a Java server
program to be run. Further requests to run a Java server program on the same application
server process continue to use the JVM that was initialized earlier. If the request happens to go
to another application server process, then a new JVM is loaded and initialized.

TXSeries supplies a language runtime for Java called cicsprJAVA. This runtime is responsible
for loading and initializing the JVM and enabling Java server applications to run under the
TXSeries environment. The cicsprJAVA runtime is dynamically loaded on to the application
server process upon a request to run a Java server program. The runtime is not unloaded after
the server program execution completes. Instead it is reused when another request comes to
run a Java server program on the same application server process.

TXSeriesV6_JAVA.ppt Page 8 of 18

IBM Software Group

8

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

Performance considerations

� TXSeries does not cache Java server programs
�Resident attribute of PD entry not applicable

�Caching takes place within the JVM

� JVM are not shared across application server
processes
�JVM is initialized only once within a process

�JVM is destroyed when the application server process
terminates

�Every application server has its own instance of JVM

�Having low IdleTimeOut can affect performance

TXSeries does not cache Java server programs, which means that the program definitions
attribute Resident is not applicable for Java server programs. The caching takes place within the
JVM, as Java server programs are directly interpreted by the Java runtime. Because there are
multiple application server processes running, there can be multiple JVMs initialized and used
within the region, meaning that an application server process cannot share its JVM resources
with another. So when a request to run a Java server program is made, an application server
process initializes the Java runtime, loads the application classes, and runs them to completion.
When the same request is made again, and the request is assigned to a different application
server process, then the new application server process initializes a new JVM, loads the
application classes, and runs them to completion. However, if the second request runs in the
same application server as the first request, JVM is not loaded again, and therefore application
classes might have been cached within the JVM.

Another factor that can affect the performance of the system is the use of the IdleTimeout region
definitions (RD) parameter of the region. This is because as the IdleTimeout is reached for an
application server process waiting for some work, the application server process is terminated,
and its corresponding JVM is also terminated. This affects the performance because the JVM
and the relevant application classes must be reloaded onto a new application server process.

TXSeriesV6_JAVA.ppt Page 9 of 18

IBM Software Group

9

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

JCICSJCICS

Section

This section covers the concept of JCICS and the services offered by JCICS.

TXSeriesV6_JAVA.ppt Page 10 of 18

IBM Software Group

10

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

JCICS

1. JCICS is a fundamental programming element to
write Java-based server applications in a
TXSeries environment.

2. TXSeries supplies the JCICS application
programming interfaces (API), which are
basically Java classes that can be instantiated in
a Java program to access a given service

JCICS is a fundamental programming element to write Java-based server applications in a CICS
environment. TXSeries supplies the JCICS application

programming interfaces, or APIs, which are Java classes that can be instantiated in a Java
program to access a given service.

TXSeriesV6_JAVA.ppt Page 11 of 18

IBM Software Group

11

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

JCICS services

�Error handling and abnormal termination support

�APPC mapped conversations

� Terminal control

� File control

� Timer

Error handling and abnormal termination support services allow you to control the execution
of the task, such as to cancel a task, issue a force abend to the class, and to handle conditions
and abends that are thrown by TXSeries services. These services are located in the Task Java
class.

Advanced Program-to-Program Communication mapped co nversations provide a complete
Java class to enable APPC-mapped conversations. These services are located in the
AttachInitiator, Conversation, and ConversationPrincipalFacility Java classes.

Terminal control services are limited to only two APIs that are equivalent to SEND CONTROL
and SEND TEXT CICS commands. These services are available in the Task Java class.

File control services provide APIs to access VSAM files. The supported file types are key-
sequenced data set (KSDS), entry-sequenced data set (ESDS), and relative record data set
(RRDS). These services are available in File, KeyedFile, KSDS, ESDS, and RRDS Java class.

Timer services provide a means to start or cancel tasks. Other time-related services such as
ASKTIME, FORMATTIME, and DELAY are not supported. These services are available in the
StartRequest Java class.

TXSeriesV6_JAVA.ppt Page 12 of 18

IBM Software Group

12

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

JCICS services (cont.)

�Program execution

� Logical unit of work

�Serialization

� Temporary storage queue (TSQ)

� Transient data queues (TDQ)

Program execution services enable you to call another program in the same logical unit of
work. Data can be passed and received through

COMMAREA. These services are located in the Program class.

Logical unit of work services enable you to commit or roll back the task’s work. These
services are located in the Task class.

Serialization services provide the means to handle shared access to resources. These
services are located in the SynchronizationResource class.

Temporary storage queue (TSQ) services provide the means to share data across multiple
transactions. These services are located in the TSQ class.

Transient data queues (TDQ) services provide the ability to access transient data queues.
These services are located in the TDQ class.

TXSeriesV6_JAVA.ppt Page 13 of 18

IBM Software Group

13

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

JCICS services – Not supported

�DUMP

� JOURNAL

�Storage

�BMS

�APPC unmapped conversations

�Authentication

� Inquire services for:
�Programs, Files, Journals and Statistics

The services listed on this slide are not supported by JCICS under TXSeries.

TXSeriesV6_JAVA.ppt Page 14 of 18

IBM Software Group

14

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

JCICS programming

�Exception handling
�The error reporting and handling is integrated into the

standard Java exception handling mechanism.
� Java exception classes are provided for each EIBRESP value

�Checked and Unchecked exceptions

�COMMAREA
�Passed as CommAreaHolder argument to the main

method

�EIB
�No corresponding class for EIB.

It is always necessary to handle error conditions in your code, as anything can go wrong within
the application. The error reporting and handling in JCICS is integrated into the standard Java
exception handling mechanism. In other languages, TXSeries indicates the success or failure of
a CICS command through EXEC interface block (EIB) variables called EIBRESP and
EIBRESP2. In Java, these EIBRESP codes are mapped to Java exception classes. For each
EIBRESP value that can occur in CICS, there is one corresponding Java exception class. The
exceptions are generally classified as checked exceptions and unchecked exceptions. When
you call a method that can throw a checked exception, you are requested to either handle the
exception in your method, or to declare your own method as throwing that exception. However,
unchecked exceptions need not necessarily be handled or declared. They usually represent
conditions that are so common (or so rare) that it is impractical to be forced to handle them.

In CICS, there are two primitive structures that are used: COMMAREA and EXEC interface
block, or EIB. The COMMAREA is automatically passed into a program using the
CommAreaHolder argument to the main method, and there is no class that can be instantiated
to access the EIB block. However, certain fields such as Transaction ID (eibtrnid) and Task
Number (eibtaskn) can be accessed through Task.getTransactionName() and
Task.getTaskNumber() respectively.

TXSeriesV6_JAVA.ppt Page 15 of 18

IBM Software Group

15

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

JCICS class hierarchy

The Figure in this slide illustrates the JCICS class hierarchy.

TXSeriesV6_JAVA.ppt Page 16 of 18

IBM Software Group

16

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

Summary

�Provide an overview of object-oriented
programming under TXSeries

�Understand the behavior of Java virtual machine
under TXSeries

�Performance considerations

�Provide an overview of JCICS services

� JCICS class hierarchy

In summary, this presentation covered TXSeries programming in Java, including the JVM,
performance considerations, and the JCICS services and class hierarchy.

TXSeriesV6_JAVA.ppt Page 17 of 18

17

IBM Software Group

Introduction to TXSeries server programming in Java © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

