
WASv6_Application_Profiling.ppt Page 1 of 19

This presentation will discuss the Application Profiling feature.

WASv6_Application_Profiling.ppt Page 2 of 19

The goals of this presentation are to gain an understanding of Application Profiling, to be

able to determine which scenarios could benefit from this functionality, and to become

familiar with set up and configuration of Application Profiling.

WASv6_Application_Profiling.ppt Page 3 of 19

The agenda for this presentation includes an overview of Application Profiling, a brief

discussion of how to define and configure the functionality, and what is new in WebSphere

Application Server V6.

WASv6_Application_Profiling.ppt Page 4 of 19

The next section will provide an overview of Application Profiling and describe a typical

scenario.

WASv6_Application_Profiling.ppt Page 5 of 19

Application Profiling provides fine-grained, application-focused Enterprise Java™ Bean

(EJB) tuning capabilities. It allows you to dynamically apply access intent policies based

upon the requirements of the caller. Access intent is currently the only run time

component that makes use of the application profiling functionality.

Application profiling introduces two concepts in order to achieve this function: tasks and

profiles.

When an invocation on a bean (whether by a finder method, a container managed

relationship (CMR) getter, or a dynamic query) requires data to be retrieved from the back

end system, the task of the active unit of work associated with the request is used to

determine the exact requirement of the transaction. The same bean loads and behaves

differently in the context of the task-to-profile mapping. Each profile provides the

developer an opportunity to reconfigure the application's access intent.

WASv6_Application_Profiling.ppt Page 6 of 19

Tuning EJB applications becomes increasingly complex as EJBs are used by more than
one application. Frequently, compromises must be made for the application that requires
the highest isolation and locking levels when accessing data. Optimizing for one
application often causes conflicts with other applications using the same EJBs.

Here, you see a typical scenario with three different clients, each with different access
intent requirements to the same entity bean, Customer. Customer has a one-to-many
container-managed relationship with the entity bean, Account.

The CustomerMaintainer session bean is responsible for updating the customer
application. Therefore, this client needs to access the Customer entity bean in a
pessimistic manner, meaning it needs to hold a lock on the Customer object for the
duration of the transaction.

The CustomerBrowser session bean is responsible for reading and presenting static data
from the customer application. This client can access the Customer entity bean in an
optimistic manner, not requiring it to hold locks. Here is potential for contention as both
clients attempt to access the Customer object at the same time. The CustomerBrowser
client may need to wait until the CustomerMaintainer client completes it’s transaction and
releases it’s lock on the data.

To help optimize access to the entity beans, you can assign access intents, or “hints” to
the persistence manager about how best to make decisions about isolation level, cursor
management, data prefetch and caching. However these access intents are static and
need to be configured for the scenario that requires the strongest level of locking. (There
are two general methods for adding access intent to EJB V2 enterprise beans. There is
the default method for handling access intent based on the bean level, which should be
used in most cases; and there is the method-level access intent which is now deprecated
in V6.0.)

The requirement in this scenario is for dynamic control over the access of the
backend application. Application Profiling allows access intents to be applied
more effectively by enabling the client to specify it’s access intent
requirements. The container and persistence manager dynamically provide
the appropriate access intent services for the caller’s request, based on the
associated task defined by the Application Profile.

Returning to the scenario, take a look at the third client.
CustomerAccountBrowser servlet is responsible for reading and displaying the
full customer account portfolio, which includes account information for the
customer. This client can take advantage of an optimistic, read ahead access
intent. With one call to the Customer entity, you can also read ahead to the
Account entity and return those account records associated with that
Customer, thus avoiding the need for additional calls to the database to
retrieve backend data.

WASv6_Application_Profiling.ppt Page 6 of 19

WASv6_Application_Profiling.ppt Page 7 of 19

The next section will briefly describe how to define and configure Application Profiling, and

touch on a few of the many different options for defining access intent.

WASv6_Application_Profiling.ppt Page 8 of 19

You will use IBM Rational® Application Developer or Application Server Toolkit to define

and configure Application Profiling. You may begin by defining your access intent policies.

The predefined Access Intent policies include: wsPessimisticUpdate, wsOptimisticUpdate,

wsOptimisticRead, wsPessimisticRead, wsPessimisticUpdate-Exclusive,

wsPessimisticUpdate-NoCollision, and wsPessimisticUpdateWeakestLockAtLoad which is

the default policy.

Next, create a container task, and associate the access intent policies with a task, by way

of the application profile. When a method is called, if the method also begins a unit of

work, the container starts the related task and applies the configured access intents. If the

called method does not begin a new unit of work, any related container-managed task will

be ignored. The application profile ties the task and access intent together.

On rare occasions, it may be necessary to programmatically set the current task name.

Application profiling supports this requirement with the TaskNameManager interface that

enables both overriding of the current task associated with the thread of execution, and

resetting of the current task with the original task.

WASv6_Application_Profiling.ppt Page 9 of 19

Application profiles influence what access intent to apply on the target bean. The access
intent has the following attributes that determine how to load data for the target bean.

Concurrency management schemes deal with the problem of managing contention for
data resources - how to allow multiple users access while maintaining accuracy and
consistency of the data and preventing deadlocks. A pessimistic scheme locks a given
resource at the beginning of a transaction and typically holds the lock for the duration of
the transaction; while an optimistic scheme acquires a lock and typically releases it within
a short period of time, after the data is read. Based upon the combination of concurrency,
access type, and the different behaviors of the databases themselves, you will see
different results with regards to levels of locking and duration of those locks, and isolation
levels when accessing the data.

Read-ahead support is used for navigating across container-managed relationships,
loading the entity bean and preloading a number of related entity beans that otherwise
would have required additional calls to the database in order to retrieve the data.

Collection increment controls the number of instances that can be pre-fetched in a single
operation. The number of instances loaded can have implications on your performance. If
the number is set too high for your scenario, the cache may become cluttered and
contention for memory with other applications and processes could adversely affect
performance. If the number is set too low for your scenario, the iterator may need to wait
for incoming data.

Collection Scope is used to control the lifecycle of a collection by specifying whether the
collection boundary should be the transaction (the default) or extended to an activity

session.

Resource-manager pre-fetch increment is a value used as a hint given to the
JDBC driver. How this hint is handled is determined by the specific JDBC
driver provider, whether it recognizes pre-fetch, and how pre-fetch may or may
not be and implemented by the database engine.

WASv6_Application_Profiling.ppt Page 9 of 19

WASv6_Application_Profiling.ppt Page 10 of 19

It can be challenging to configure application profiles and access intents. Application

Developer and the Application Server Toolkit provide an automatic application profiling

analysis engine that can help with this task. The analyzer examines compiled classes and

the deployment descriptors of Java™ 2 Enterprise Edition (J2EE) applications and

determines the entry point of transactions, it examines the methods and determines which

entities are enlisted in those transactions, and then examines the entities and determines

whether those entities are read or updated during the transaction.

You can run this auto analysis wizard by opening the application deployment descriptor,

selecting the Extended Services tab, then clicking on the “Auto” button from within the

Application Profiling window. You will then select those EJB projects you would like

included in the analysis.

The analysis engine does not support analysis when the unit of work is Activity Sessions.

WASv6_Application_Profiling.ppt Page 11 of 19

You can run the analysis in either closed world or open world mode. A closed-world

analysis assumes that all possible clients of the application are included in the ear and

therefore, included in the analysis, and the analysis is complete. It does not look at any

other potential clients or additions. The results of a closed-world analysis report the set of

all transactions that can be invoked by a web, JMS, application client, or session bean.

The results do not include potential transactions that are never run.

An open-world analysis assumes that not all clients are available for analysis or that the

analysis cannot return complete or accurate results. An open-world analysis returns the

complete set of possible transactions.

If you select the Clean attribute, the existing configuration of selected modules is removed

and the new configuration is applied fresh. If you do not select this option, the new

configuration is merged into the existing configuration.

Finally, you will select concurrency access type values for the defaults that should be

generated. If you have a transaction that invokes only read methods on a particular

object, which access type would you like, pessimistic read or optimistic read? Similarly for

updates, do you want updates handled as a pessimistic update or an optimistic update?

Once analysis completes, the results will be displayed and persisted as an

application profiling configuration. Container-managed tasks will be created

for clients, and application profiles are constructed with the appropriate access

intent for the entities in the transaction represented by the task.

You should examine the results of the analysis very carefully. In many cases

you must manually modify them to meet the requirements of the application.

However, the tool can be an effective starting place for most applications and

may offer a quick configuration of application profiles for some applications.

WASv6_Application_Profiling.ppt Page 11 of 19

WASv6_Application_Profiling.ppt Page 12 of 19

As recommended, you should review the configurations and settings created by the

analysis. For example, obtain a baseline test of your application, incorporate the results of

the analysis, retest, and make necessary adjustments. To review the configuration, open

the EJB deployment descriptor with the Deployment Descriptor Editor and select the

Extended Access tab.

WASv6_Application_Profiling.ppt Page 13 of 19

Access Intent values can be also be modified to improve performance. Once again, all

changes should be tested to insure the intended results. Some settings can have adverse

affects on performance.

WASv6_Application_Profiling.ppt Page 14 of 19

To use the Application Profiling service on the WebSphere Application Server, ensure the
service is enabled using the Administrative Console.

WASv6_Application_Profiling.ppt Page 15 of 19

The next section highlights the WebSphere Application Server V6 changes in Application

Profiling.

WASv6_Application_Profiling.ppt Page 16 of 19

With Application Profile in WebSphere Business Integration Server Foundation 5.1, active
tasks are determined on a per-method basis. When an invocation on a bean requires data
to be retrieved from the backend system, the container examines the context to see if
there is an active task associated. If so, the current task associated with the request is
used to determine the exact requirement of the transaction. This can lead to unexpected
deadlocks during database access as that task is not necessarily associated with a
transaction and could be arbitrarily applied and overridden. This could also have an affect
on performance as each method is examined.

With Application Profile in Application Server 6.0, there are usability and performance
improvements. The concept of unit of work is incorporated. Any unit of work (transaction
or activity session) that begins in the scope of a configured task is associated with that
task name. A unit of work can only be named when it is initiated, and the name cannot
change for the lifetime of that unit of work. A unit of work ignores any subsequent task
name configurations at any point after it has begun. The task is used for the duration of its
unit of work to identify configured policies specific to that unit of work. Active tasks are
determined only at the initiation of a unit of work. This helps to avoid unexpected
deadlocks during database access that may have occurred in previous versions. This also
helps improve performance, as the check for an active task is done only at initiation of a
unit of work rather than on a per-method basis.

In the runtime, there is a new “compatibility” attribute in the Administrative Console that is
checked by default. J2EE 1.4 applications configured with Application Profiling will
automatically observe the new version 6.0 behavior; however, the behavior of J2EE 1.3
applications configured with Application Profiling is determined by this attribute. If
checked, the J2EE 1.3 application will continue to use the version 5.1 behavior. For J2EE
1.3 applications, you may want to unchecked the compatibility attribute, and test the
application with the new behavior. You may find you experience better results.

WASv6_Application_Profiling.ppt Page 17 of 19

This section will summarize the Application Profiling presentation.

WASv6_Application_Profiling.ppt Page 18 of 19

In summary, you now understand the Application Profiling feature and will be able to begin

to analyze your own applications to determine how to best take advantage of this powerful

function. You’ve also seen how to set up and configure Application Profiling and have an

understanding of the various options available to you to fine-tune your EJB applications.

Also emphasized is the importance of setting baseline tests for your applications and

running appropriate test cycles to determine how to achieve optimum performance with

regards to your unique environment.

WASv6_Application_Profiling.ppt Page 19 of 19

