IBM Software Group

IBM WebSphere Application Server V6

Asynchronous beans

(@business on demand.

© 2006 IBM Corporation

Converted to video May 13, 2015
This presentation will discuss the Asynchronous Beans programming model extension in
WebSphere Application Server V6.

WASV6_Asynchronous_Beans.ppt

Page 1 of 18

IBM Software Group

Goals

= Provide an overview of asynchronous beans

* Describe several scenarios

© 2006 IBM Corporation

The goal of this presentation is to describe the asynchronous programming capabilities
and functionality provided by the Asynchronous Beans extension and to review several
scenarios where this is useful.

WASV6_Asynchronous_Beans.ppt Page 2 of 18

IBM Software Group EH

Agenda

= Overview of asynchronous beans
= Rationale for using asynchronous beans
= Sample scenarios

= Summary

L

'Asvnchrus Beans © 2006 IBM Corporation

The agenda for this presentation includes an overview of the Asynchronous Beans
functionality in WebSphere Application Server V6 and why you would want to take
advantage of this feature. You will also be shown several scenarios to help you
understand where you might be able to take advantage of this very powerful set of
asynchronous programming APIs.

WASV6_Asynchronous_Beans.ppt Page 3 of 18

IBM Software Group EM

Asynchronous beans overview

= Collection of asynchronous programming functions
» Implemented as Java™ objects or stateless local session
beans
= Work and WorkManager support
» Allows J2EE apps to spawn threads and to transfer their
J2EE context to those threads
= Event triggering
» Allows firing event handling methods on generic listeners

» Using the J2EE context of the component that registered
the listener

© 2006 IBM Corporation

The Asynchronous Beans extension covers a variety of functions to address
asynchronous programming requirements. One of the main features is the capability to
spawn threads and propagate the J2EE context to those threads. This is by submitting
work to the WorkManager.

Work Manager for Application Server JSR 237 http://www.jcp.org/en/jsr/detail?id=237
Timer for Application Servers JSR 236 http://www.jcp.org/en/jsr/detail?id=236

WASV6_Asynchronous_Beans.ppt Page 4 of 18

IBM Software Group EH

Asynchronous beans overview (cont.)

= Alarms and alarm listeners
» Light-weight, non-transactional timers
» Invoke alarm listener methods on listeners

» Subsystem monitors

» Heartbeat based devices that check health of a generic
subsystem

» Use alarms to notify observers

= AsynchScopes

» Allows applications to obtain an alarm and subsystem
monitor — associated with WorkManager

. L N

bAsvnchronous Beans © 2006 IBM Corporation

You also see the other robust and high performance concurrency utilities, such as event
triggering, alarms and alarm listeners, subsystem monitors, and AsynchScopes. You will
learn more about each of these in the following charts.

WASV6_Asynchronous_Beans.ppt Page 5 of 18

IBM Software Group EH

Rationale for asynchronous beans

= Applications may need to spawn separate threads
» Have work done in the background

= Asynchronous beans address this requirement

» Provide a compromise between

= Fully loosely coupled model (messaging)
= Tightly coupled, single-threaded, synchronous model (EJB calls)

= Allow the asynchronous work to be done under the
J2EE context of the component that originated the

work

The primary motivation behind Asynchronous Beans is to enable Java™ 2 Enterprise
Edition (J2EE) applications with full multi-threading support. By using asynchronous
beans, your J2EE components will be able to submit code to be run on a separate thread
in an asynchronous manner. The component that submitted the asynchronous bean will
not wait for the bean to run, although typically there are mechanisms for the submitter to
interact with the asynchronous bean. The asynchronous bean runs under the same J2EE
context as the submitter - rather than with a J2EE context of its own. The asynchronous
bean will therefore look up EJBs, access resources, and fall under the same authorization
scheme as the component that created it and submitted it to run asynchronously.

This model represents a very interesting compromise between the loosely coupled
approach used with messaging, where there is no propagation of context - and the tightly
coupled approach of traditional J2EE programming, that runs in a single thread.

WASV6_Asynchronous_Beans.ppt Page 6 of 18

IBM Software Group EM

Asynchronous beans and J2EE contexts

= Asynchronous Beans allow propagating all or part
of the context to separate threads
» The administrator specifies these policies using the
Administrative Console

= WorkArea

= Application Profiling (deprecated in 6.0)
= Internationalization

= Security

» java:comp/env always passed along

© 2006 IBM Corporation

Normally, J2EE context can flow from a J2EE component to another component as long
as both are called on the same thread. The Asynchronous Beans framework makes it
possible to transfer all or some of the context to separate threads.

The administrator can also configure which parts of the context are going to be
transferred, when a WorkManager is created. Any combination of the following four

options is supported:
WorkArea
Internationalization context

Application profiling definitions (Transferring Application Profiling context is
deprecated in V6.0).

Security
The java:comp/env local namespace is always passed along with Asynchronous Beans.

WASV6_Asynchronous_Beans.ppt Page 7 of 18

IBM Software Group EH

Asynchronous beans and J2EE contexts (cont.)

* Transactions

» Transaction context is not propagated
= Local transaction automatically started by the container
= A global transaction must be explicitly started if needed

= Programming model limitations

» Asynchronous Beans can cache connection factories,
but should not cache connections

= Should adopt a get / use / close model when using J2EE connections

Due to the asynchronous nature of this programming model, transactional contexts are not
passed to the asynchronous beans. The asynchronous beans get their own local
transaction, or they can start global transactions if XA resources are involved.

Avoid caching connections to avoid running out of connections to the backend system.
Also, note that WebSphere does not support caching connections across multiple threads.
You can cache connection factories, use them to get a connection, use the connection and
then release it when the asynchronous process finishes running. That way, connection
pooling is used at its best: the connection is not held by an asynchronous bean that is
waiting to be run, rather it is used only when the bean actually runs.

WASV6_Asynchronous_Beans.ppt Page 8 of 18

WorkManager and work: Scenario

= Work has to be dispatched and run on a separate thread
= Using the J2EE context of the originator

ReportSubmitter WorkManager ReportGenerator

-
‘\'~ Work %
\ Work id=xyz
-
Customer No Workltem Work id=abec
pnntnl (é)

Bank Statement

Customer

Account

Client

Asvnchronous Beans © 2006 IBM Corporation

This chart illustrates a simple example where an application creates an instance of a Work
implementation that uses a ReportGenerator EJB to print a statement of account for a
certain customer. The Work can be submitted to run in parallel on a separate thread.

Notice that the Work instance can still look up EJBs as if it were called directly by the
ReportSubmitter bean.

WASV6_Asynchronous_Beans.ppt Page 9 of 18

IBM Software Group EH

EventSource and event listeners: Scenario

. wyn PROXY Y
Listener"Y

\ ;
Work id=xyz
A |
Work id=abc

WorkManager

This is a scenario where three servlet applications have registered a listener each with an
EventSource. The three listeners implement different interfaces (X and Y), meaning they
monitor different events.

When a certain event occurs, the application that has generated it needs to acquire the
event source, and ask it for a proxy to the listeners of a certain type. If the event Y occurs:
the originator acquires a proxy to all the "Listener Y" objects that are currently registered.

Next, the event originator calls the firing method on the proxy (also called the event
trigger), and that will cause the same method to be invoked on all the "Listener Y" objects.

Listeners have their methods invoked synchronously on the same thread as the publisher.
Therefore, care needs to be taken with synchronization blocks. If the publisher has
acquired a monitor on an object and if listeners are called on the same thread then they
will also be able to acquire a monitor on that lock because it is the same thread. If the
application wants the listeners to be called on a different thread then the application
should start a Work instance that fires the event.

The order listeners are fired can be ordered by specifying an listener sequence number
when calling addListener. If the sequence number is not specified then it defaults to 5.
Valid sequence numbers are integers from 0..9. Listeners are invoked in ascending order,
O first and 9 last.

In any case, the listeners use the same J2EE context as the servlet application that
registered them.

WASV6_Asynchronous_Beans.ppt Page 10 of 18

IBM Software Group BH

Intra-application notification service

= Special type of EventSource, included in each Enterprise Application

= The application EventSource can be found using the following code in
any servlet or EJB in the application
InitialContext ic = new InitialContext();

EventSource appES = (EventSource)
ic.lookup(“java:comp/websphere/ApplicationNotificationService”);

/I now use appES in publisher or listener mode.

= This EventSource can be used by application components for firing
asynchronous events to other components in that application

= |t cannot be used for inter-application notification
» JMS should be used in this case

= Event listeners will always run within the context of the component that
registered the listener.

During the application lifetime, individual J2EE components (servlets or enterprise beans)
within a single enterprise application (EAR file) might need to signal each other. There is
an event source in the java:comp namespace that is bound into all components within an
EAR file. This intra-application event notification service makes it possible for components
that belong to the same application to communicate with each other through event
notification (an EJB could subscribe a listener, another EJB could fire an event).

Keep in mind that this mechanism is not valid for communications that cross the
boundaries of a single EAR - where JMS should rather be utilized.

Event listeners will always run within the context of the component that registered the
listener.

WASV6_Asynchronous_Beans.ppt Page 11 of 18

IBM Software Group Eﬁ

AsynchScopes

= Associated with a WorkManager, includes:
» AlarmManager
» SubsystemMonitor
» PropertyMap (to store arbitrary data)

= Can be arranged hierarchically
» WorkManager root of the hierarchy
» AsynchScope can create children AsynchScopes

» When an AsynchScope is deleted, all the children
AsynchScopes are also deleted
= Alarms are cancelled

L

2 =
Asynchronous Beans © 2006 IBM Corporation

The AsynchScopes are key objects in the Asynchronous Beans framework that allow
applications to obtain an Alarm Manager, a Subsystem Monitor, or a PropertyMap. They
are associated with a WorkManager, which is the anchor point of the entire Asynchronous
Beans architecture. This hierarchical structure is useful when you need to monitor complex
subsystems that may have a hierarchical structure themselves.

WASV6_Asynchronous_Beans.ppt Page 12 of 18

IBM Software Group EH

AsynchScopes (cont.)

= Created from a WorkManager object

InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)ic.lookup(“java:comp/wd/WorkManager");
AsynchScope asynchScope = wm.createAsynchScope();

= Or from another AsynchScope

L

'Asvnchrus Beans © 2006 IBM Corporation

You can use the WorkManager to create instances of AsynchScopes. In turn,
AsynchScopes themselves can be used to create other AsynchScopes. Those second,
third, ... generation asynchronous scopes will be hierarchically connected to their "parents”
- when a parent is destroyed, all the children (and implicitly all the alarms scheduled on the
children) will go away as well.

WASV6_Asynchronous_Beans.ppt Page 13 of 18

|BM Software Group m

Triggering alarms

Create the AsynchScope:

| AsynchScopeasynchScope = asynchScopeManager.createAsynchScope(myAsynchScope); |

Obtain the AlarmManager:

| AlarmManager alarmManager = asynchScope.getAlarmManager(); ‘

Create an alarm:

Alarm alarm = alarmManager.create(alarmListener, “Alarm Context Info”,
interval_milliseconds);

Specify the code to run when the alarm fires:
» Implement the AlarmListener interface
» Code the fired method
» The method that gets fired runs using the context of the alarm creator

Reschedule or cancel the alarm:
» call alarm.reset() or alarm.cancel() in the fired method

© 2006 IBM Corporation

An Alarm is a transient, high-performance timer similar to java.util. Timer. Applications can
get an AlarmManager instance from an AsynchScope. The AlarmManager can then be
used to create new alarms. Each alarm will run on an available thread at the configured
time using a thread from the Alarm thread pool in the associated WorkManager.

When the alarm goes off, it will call the fired() method on the listener, using the J2EE
context of the alarm creator. The creator can interact with the alarm manager and reset or
cancel the alarm if necessary.

For example, consider the scenario where you need to implement a safety mechanism
where a certain event has to occur every 5 seconds, or security has to be alerted. You can
create an alarm and register a listener that will be called if the alarm goes off, after 5
seconds. If the event is received before the time limit, the alarm can be reset and the
counter can be restarted.

These alarms are high-performance and transient. Applications that use them, need to
recreate them after shutdown and restart of the application server..

WASV6_Asynchronous_Beans.ppt Page 14 of 18

IBM Software Group

Monitoring the health of subsystems

= To obtain a SubsystemMonitor:

Must call
ping()
method

Interested parties register listener

N4/

: Subsystem to be
Events: SubsystemMonitor e — monitored

stale, dead, fresh
listeners called using
J2EE context of code o
dic heartbeat
that registered the listener periodic hearibea

SubsystemMonitor monitor = asynchScope.getSubsystemMonitorManager().create("name”,
heartBeatInterval, missedBeatsForStale, missedBeatsForDead);

The objective of the SubsystemMonitor is to ensure that a certain application, or daemon,
is alive and well, by receiving periodic heartbeats. SubsystemMonitors are very useful
when time-dependent information and data currency are critical. For example, in a stock
trading application, the requirement is to make sure that the stock quotes are fresh, and
therefore there is a need to monitor the "subsystem" that publishes the quotes, in order to
make sure that it is up and running.

The SubsystemMonitor can be obtained by an asynchronous bean and configured to fire
two types of listeners:

One for the "stale" state of the subsystem
One for the "dead" state of the subsystem

You will be able to configure how often the monitored subsystem has to call the ping()
method on the SubsystemMonitor, or the frequency of the heartbeat. You will also be able
to configure how many missed heartbeats make a subsystem "stale", and how many
missed heartbeats make it a "dead" subsystem.

How the subsystem sends heartbeats, and how they are detected in order that the ping
method is called, is entirely application dependent and must be explicitly coded

Applications can register listeners with the SubsystemMonitor. The fact that the notification
listeners are called using the J2EE context of the code that registered the listener is a
fundamentally important aspect of the asynchronous functionality provided by the

WASV6_Asynchronous_Beans.ppt Page 15 of 18

WorkManager.

WASV6_Asynchronous_Beans.ppt Page 15 of 18

IBM Software Group

Section

Summary

i
;:m::

s p
Asynchronous Beans

And, in summary...

WASV6_Asynchronous_Beans.ppt

© 2006 IBM Corporation

Page 16 of 18

|BM Software Group H

Summary

= Learned about Asynchronous Beans functionality

= Reviewed sample scenarios

L

-Asvnchronous Beans © 2006 IBM Corporation

This presentation covered the Asynchronous Beans programming model extension that
covers a variety of functions to address asynchronous programming requirements. It also
included several scenarios to help reinforce the understanding of where you might be able
to take advantage of this functionality.

There are two Java Specification Requests (JSRs) related to this extension. There is
Work Manager for Application Server JSR 237 http://www.jcp.org/en/jsr/detail?id=237, and
Timer for Application Servers JSR 236 http://www.jcp.org/en/jsr/detail?id=236.

WASV6_Asynchronous_Beans.ppt Page 17 of 18

IBM Software Group

Template Revision: 04/25/2008 11:09

Trademarks, copyrights, and disclaimers

The following or regi of c in the United States, other countries, or both:
BH(Iu gs&&uu :fimix ggg;ges wgswere
S B2 nversinbose - = =
Java and allJ are of Sun Mi Inc. in the United States, other countries, or both.

i ,and the logo are regi of ion in the United States, other countries, or both.
Intel, ActionMedia, LANDesk, MMX, Pentium and are ofintel C ion in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvakis.
Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracyas of the date of initial publication. Product data is subjectto change without notice. Th or
raphical errors. IBM may make improvements and/or mm the produu(s)md/of prof %s)mabed herein alany!lne whom nohoe anstatevr\ems reoardng BM s
redrecuon and intent are subjectto change or windrml nohee. represen objectives only. References in this document to
ices does not that IBM intends to make such serv:eenvain in all countriesin which IBM operates or does business. An: mmenmtonnlsh Program
Broduct i this document s not ntended to state or mply tat onbmat program product may be used. Any functionally equivalent program, that does not infringe IBM's int
property rights, may be used instead.

Information is provided "AS IS™ wmomwumsgcoun kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRBUTED "AS IS" WITHOUT ANY WARRANTY El
EXPRESS Of PLED B LAI) WARRANTES OF MERCHANTABILITY, FITNESS FOR APARTICULAR PURPOSE OR NONINFRINGEMENT. BM shal
have no respo is information. 1BM odum are warranted, if atal, according to the terms and conditions of the Agreetwgnts (eg, gl.l Customer A}reement <

ofthose products, their published announcement avalable sources. 1M nas not tesied ose products in connection with this pubiuuon and cannot conﬁrmthe

Statement of Limted lrra htemaﬁoul Program LmseA eement, etc. iundcr which they are pro
or other pub:%’y

accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and

services.

The provision ofthe i g ined herein is not intended to, and does int any right or license under any IBM nts L iries regarding patent or
licenses should be made, in writing, to: ot g Lo ¥ petsnts.or ey ™
Bii Cormoratan
ration

Castie Drive
Armonk, NY 10504-1785
USA
Performance is based on measurements and projections ushg standard IBM benc ina i D as illus of
how those customers have used B products and the results they may h: have . The actual that any user will vary depending upon
considerations wcnnmenmum of multip g in the user's job the VO gl , the uoragecomm andthe , N0
can be given that an i ghput or per D! to the ratios stat
© Copyright i ines C 2006. Al rights reserved.
Note to U.S. Users- ion related to i i Use, or di is subjectto i set forth in GSA ADP Schedule Contract and IBM Corp.

chronous Beans

WASV6_Asynchronous_Beans.ppt Page 18 of 18

