
WASv6_Asynchronous_Beans.ppt Page 1 of 18

This presentation will discuss the Asynchronous Beans programming model extension in

WebSphere Application Server V6.

WASv6_Asynchronous_Beans.ppt Page 2 of 18

The goal of this presentation is to describe the asynchronous programming capabilities

and functionality provided by the Asynchronous Beans extension and to review several

scenarios where this is useful.

WASv6_Asynchronous_Beans.ppt Page 3 of 18

The agenda for this presentation includes an overview of the Asynchronous Beans

functionality in WebSphere Application Server V6 and why you would want to take

advantage of this feature. You will also be shown several scenarios to help you

understand where you might be able to take advantage of this very powerful set of

asynchronous programming APIs.

WASv6_Asynchronous_Beans.ppt Page 4 of 18

The Asynchronous Beans extension covers a variety of functions to address

asynchronous programming requirements. One of the main features is the capability to

spawn threads and propagate the J2EE context to those threads. This is by submitting

work to the WorkManager.

Work Manager for Application Server JSR 237 http://www.jcp.org/en/jsr/detail?id=237

Timer for Application Servers JSR 236 http://www.jcp.org/en/jsr/detail?id=236

WASv6_Asynchronous_Beans.ppt Page 5 of 18

You also see the other robust and high performance concurrency utilities, such as event

triggering, alarms and alarm listeners, subsystem monitors, and AsynchScopes. You will

learn more about each of these in the following charts.

WASv6_Asynchronous_Beans.ppt Page 6 of 18

The primary motivation behind Asynchronous Beans is to enable Java™ 2 Enterprise

Edition (J2EE) applications with full multi-threading support. By using asynchronous

beans, your J2EE components will be able to submit code to be run on a separate thread

in an asynchronous manner. The component that submitted the asynchronous bean will

not wait for the bean to run, although typically there are mechanisms for the submitter to

interact with the asynchronous bean. The asynchronous bean runs under the same J2EE

context as the submitter - rather than with a J2EE context of its own. The asynchronous

bean will therefore look up EJBs, access resources, and fall under the same authorization

scheme as the component that created it and submitted it to run asynchronously.

This model represents a very interesting compromise between the loosely coupled

approach used with messaging, where there is no propagation of context - and the tightly

coupled approach of traditional J2EE programming, that runs in a single thread.

WASv6_Asynchronous_Beans.ppt Page 7 of 18

Normally, J2EE context can flow from a J2EE component to another component as long

as both are called on the same thread. The Asynchronous Beans framework makes it

possible to transfer all or some of the context to separate threads.

The administrator can also configure which parts of the context are going to be

transferred, when a WorkManager is created. Any combination of the following four

options is supported:

WorkArea

Internationalization context

Application profiling definitions (Transferring Application Profiling context is

deprecated in V6.0).

Security

The java:comp/env local namespace is always passed along with Asynchronous Beans.

WASv6_Asynchronous_Beans.ppt Page 8 of 18

Due to the asynchronous nature of this programming model, transactional contexts are not

passed to the asynchronous beans. The asynchronous beans get their own local

transaction, or they can start global transactions if XA resources are involved.

Avoid caching connections to avoid running out of connections to the backend system.

Also, note that WebSphere does not support caching connections across multiple threads.

You can cache connection factories, use them to get a connection, use the connection and

then release it when the asynchronous process finishes running. That way, connection

pooling is used at its best: the connection is not held by an asynchronous bean that is

waiting to be run, rather it is used only when the bean actually runs.

WASv6_Asynchronous_Beans.ppt Page 9 of 18

This chart illustrates a simple example where an application creates an instance of a Work

implementation that uses a ReportGenerator EJB to print a statement of account for a

certain customer. The Work can be submitted to run in parallel on a separate thread.

Notice that the Work instance can still look up EJBs as if it were called directly by the

ReportSubmitter bean.

WASv6_Asynchronous_Beans.ppt Page 10 of 18

This is a scenario where three servlet applications have registered a listener each with an

EventSource. The three listeners implement different interfaces (X and Y), meaning they

monitor different events.

When a certain event occurs, the application that has generated it needs to acquire the

event source, and ask it for a proxy to the listeners of a certain type. If the event Y occurs:

the originator acquires a proxy to all the "Listener Y" objects that are currently registered.

Next, the event originator calls the firing method on the proxy (also called the event

trigger), and that will cause the same method to be invoked on all the "Listener Y" objects.

Listeners have their methods invoked synchronously on the same thread as the publisher.

Therefore, care needs to be taken with synchronization blocks. If the publisher has

acquired a monitor on an object and if listeners are called on the same thread then they

will also be able to acquire a monitor on that lock because it is the same thread. If the

application wants the listeners to be called on a different thread then the application

should start a Work instance that fires the event.

The order listeners are fired can be ordered by specifying an listener sequence number

when calling addListener. If the sequence number is not specified then it defaults to 5.

Valid sequence numbers are integers from 0..9. Listeners are invoked in ascending order,

0 first and 9 last.

In any case, the listeners use the same J2EE context as the servlet application that

registered them.

WASv6_Asynchronous_Beans.ppt Page 11 of 18

During the application lifetime, individual J2EE components (servlets or enterprise beans)

within a single enterprise application (EAR file) might need to signal each other. There is

an event source in the java:comp namespace that is bound into all components within an

EAR file. This intra-application event notification service makes it possible for components

that belong to the same application to communicate with each other through event

notification (an EJB could subscribe a listener, another EJB could fire an event).

Keep in mind that this mechanism is not valid for communications that cross the

boundaries of a single EAR - where JMS should rather be utilized.

Event listeners will always run within the context of the component that registered the

listener.

WASv6_Asynchronous_Beans.ppt Page 12 of 18

The AsynchScopes are key objects in the Asynchronous Beans framework that allow

applications to obtain an Alarm Manager, a Subsystem Monitor, or a PropertyMap. They

are associated with a WorkManager, which is the anchor point of the entire Asynchronous

Beans architecture. This hierarchical structure is useful when you need to monitor complex

subsystems that may have a hierarchical structure themselves.

WASv6_Asynchronous_Beans.ppt Page 13 of 18

You can use the WorkManager to create instances of AsynchScopes. In turn,

AsynchScopes themselves can be used to create other AsynchScopes. Those second,

third, ... generation asynchronous scopes will be hierarchically connected to their "parents"

- when a parent is destroyed, all the children (and implicitly all the alarms scheduled on the

children) will go away as well.

WASv6_Asynchronous_Beans.ppt Page 14 of 18

An Alarm is a transient, high-performance timer similar to java.util.Timer. Applications can

get an AlarmManager instance from an AsynchScope. The AlarmManager can then be

used to create new alarms. Each alarm will run on an available thread at the configured

time using a thread from the Alarm thread pool in the associated WorkManager.

When the alarm goes off, it will call the fired() method on the listener, using the J2EE

context of the alarm creator. The creator can interact with the alarm manager and reset or

cancel the alarm if necessary.

For example, consider the scenario where you need to implement a safety mechanism

where a certain event has to occur every 5 seconds, or security has to be alerted. You can

create an alarm and register a listener that will be called if the alarm goes off, after 5

seconds. If the event is received before the time limit, the alarm can be reset and the

counter can be restarted.

These alarms are high-performance and transient. Applications that use them, need to

recreate them after shutdown and restart of the application server..

WASv6_Asynchronous_Beans.ppt Page 15 of 18

The objective of the SubsystemMonitor is to ensure that a certain application, or daemon,

is alive and well, by receiving periodic heartbeats. SubsystemMonitors are very useful

when time-dependent information and data currency are critical. For example, in a stock

trading application, the requirement is to make sure that the stock quotes are fresh, and

therefore there is a need to monitor the "subsystem" that publishes the quotes, in order to

make sure that it is up and running.

The SubsystemMonitor can be obtained by an asynchronous bean and configured to fire

two types of listeners:

One for the "stale" state of the subsystem

One for the "dead" state of the subsystem

You will be able to configure how often the monitored subsystem has to call the ping()

method on the SubsystemMonitor, or the frequency of the heartbeat. You will also be able

to configure how many missed heartbeats make a subsystem "stale", and how many

missed heartbeats make it a "dead" subsystem.

How the subsystem sends heartbeats, and how they are detected in order that the ping

method is called, is entirely application dependent and must be explicitly coded

Applications can register listeners with the SubsystemMonitor. The fact that the notification

listeners are called using the J2EE context of the code that registered the listener is a

fundamentally important aspect of the asynchronous functionality provided by the

WorkManager.

WASv6_Asynchronous_Beans.ppt Page 15 of 18

WASv6_Asynchronous_Beans.ppt Page 16 of 18

And, in summary…

WASv6_Asynchronous_Beans.ppt Page 17 of 18

This presentation covered the Asynchronous Beans programming model extension that

covers a variety of functions to address asynchronous programming requirements. It also

included several scenarios to help reinforce the understanding of where you might be able

to take advantage of this functionality.

There are two Java Specification Requests (JSRs) related to this extension. There is

Work Manager for Application Server JSR 237 http://www.jcp.org/en/jsr/detail?id=237, and

Timer for Application Servers JSR 236 http://www.jcp.org/en/jsr/detail?id=236.

WASv6_Asynchronous_Beans.ppt Page 18 of 18

