
WASv6_LPS_ActivitySession.ppt Page 1 of 17

This presentation will discuss the Last Participant Support feature and the ActivitySessions

service.

WASv6_LPS_ActivitySession.ppt Page 2 of 17

The goals for this presentation are to be able to understand the Last Participant Support

and ActivitySession Service functionality and to be able to determine under which

circumstances you would want to take advantage of either of these extensions.

WASv6_LPS_ActivitySession.ppt Page 3 of 17

The agenda for this presentation covers an overview of Last Participant Support and how

to configure it, and an overview of the ActivitySession Service and how to configure it.

WASv6_LPS_ActivitySession.ppt Page 4 of 17

This section will provide you with an overview of the Last Participant Support extension.

WASv6_LPS_ActivitySession.ppt Page 5 of 17

Last Participant Support (LPS) allows applications to use a single, one-phase resource

with one or more two-phase resources, in a global transaction. Certain applications require

this functionality. For example, consider the scenario where a message is placed on a

queue, an update is made to a record in an Enterprise Information System (EIS), and an

update is made to a relational database. The requirement is to coordinate the Java™

Messaging Service (JMS) and relational database resources, which are two-phase

resources, with the EIS record update, which is a one-phase resource, all within a single

global transaction. By using Last Participant Support, you are able to do this.

How does this work? At transaction commit time, the two-phase commit resources are

prepared first using the two-phase commit protocol, and if this is successful, the one-

phase commit resource is then called to commit. The two-phase commit resources are

then committed or rolled back depending upon the response of the one-phase commit

resource.

WASv6_LPS_ActivitySession.ppt Page 6 of 17

WebSphere Application Server Toolkit or Rational® Application Developer, allow for

specifying the intent to use Last Participant Support on an Enterprise Application basis

within the application deployment descriptor. Last Participant Support is declarative in

nature.

On the Application Server, use the Administrative Console to enable LPS by checking the

“Accept heuristic hazard” checkbox, within your application settings. To view this

Administrative Console page, click Applications > Enterprise Applications >

application_name > Last Participant Support Extension and on the Configuration tab,

check the box in front of Accept heuristic hazard. A heuristic outcome can occur if the

transaction service does not receive a response from the request to commit the single-

phase resource. You can configure the heuristic completion direction (commit, rollback, or

manual) from the Transaction Service configuration tab in the Administrative Console.

It is recommended that you enable the additional Transaction Service logging when using

LPS.

WASv6_LPS_ActivitySession.ppt Page 7 of 17

This section will provide you with an overview of the ActivitySessions extension.

WASv6_LPS_ActivitySession.ppt Page 8 of 17

ActivitySessions provide an alternate unit-of-work model to standard EJB transactions.

This capability allows for the coordination of multiple one-phase resources into a single

unit of work. For example, the coordination of updates of two entity beans backed by two

separate, one-phase resource datastores.

By extending the EJB lifecycle, Activity Sessions reduce unnecessary use of heavier-

weight transactions when the only requirement is to define the activation scope of an EJB.

This capability is configured using the EJBActivationPolicy value for activation/passivation

on an Activity Session boundary.

ActivitySessions also allow for extending the life of the local transaction beyond it’s normal

boundaries. This provides a number of benefits related to EJBs and caching of those

objects, which may improve performance.

WASv6_LPS_ActivitySession.ppt Page 9 of 17

To use the ActivitySessions service on the WebSphere Application Server, ensure the

service is enabled using the Administrative Console.

WASv6_LPS_ActivitySession.ppt Page 10 of 17

This chart articulates the fundamental technical value of ActivitySessions. Here you can

see a number of single-phase, local transactions Technically, it would not be possible to

provide a single checkpoint for all these activities, although they may be logically related.

For example, this scenario could correspond to a travel booking application, where

different reservations may need to be made, such as car, hotel, flight, and so on. Each

individual reservation may take place on different servers and the travel booking

application may need to coordinate all the steps into a single unit of work. Then the user

needs to confirm or cancel the entire reservation.

ActivitySessions allow you to coordinate the various transactions into a single unit of work

and allow you to provide a single checkpoint for all the transactions that were initiated

during the ActivitySession. Notice that at the end of the ActivitySession, you still have the

choice of rolling back the local transactions, in spite of the fact that, theoretically, those

changes were already committed.

The ActivitySession service of WebSphere Application Server captures the commit

operations of each local transaction and upholds them. At the end of the ActivitySession,

the container will return and commit (or roll back) each individual transaction. Keep in

mind that the ActivitySession is not a substitute for two-phase commitment control, when it

comes to data integrity. An ActivitySession may result in a mixed outcome, if some of the

single phase resources successfully get committed before another resource fails to

commit. In that case, the ActivitySession service will allow the programmer to retrieve the

list of resources that were committed and those whose state is uncertain.

WASv6_LPS_ActivitySession.ppt Page 11 of 17

Special extensions to the deployment descriptors allow you to specify the ActivitySession

settings, using WebSphere Application Server Toolkit or Rational Application Developer.

Entity Beans are always container-managed from an ActivitySession standpoint and

therefore there is no need to specify the ActivitySession attributes. Entity Beans will use

any ActivitySession context that is provided to them by their callers.

Session Beans will support an activity-session-type that matches the transaction-type. A

Session Bean that is configured with container-managed transactions supports container-

managed ActivitySessions. You can configure the ActivitySession policy for such a

Session Bean using WebSphere Application Server Toolkit or Rational Application

Developer.

Session Beans that are configured for bean-managed transactions will not support

container-managed ActivitySessions. If any ActivitySession needs to be started by this

type of Enterprise Java Beans, you need to use the programmatic approach.

Here, you see how you can define a container-managed ActivitySession policy by using

Rational Application Developer. The policy needs to be defined on a method-by-method

basis, and the dialog to define it follows very closely the semantics of the container

transaction definitions.

WASv6_LPS_ActivitySession.ppt Page 12 of 17

Web components can also be configured for the ActivitySession support using special

deployment descriptor extensions. WebSphere Application Server Tool Kit or Rational

Application Developer allow you to set the parameters for those extensions on individual

servlets or Java™ Server Pages JSPs).

If you set the ActivitySession control to “WebApp" for a certain web component, that

equates to choosing the programmatic approach. The programmer will be responsible for

starting an ActivitySession from within a servlet/JSP and attaching it to the HTTP session,

if the ActivitySession has to span multiple HTTP requests, by using the

UserActivitySession APIs.

If you set the ActivitySession control to “WebContainer”, the container will automatically

start a new ActivitySession every time a new HTTP session is created. The

ActivitySession context will also be attached to the HTTP session automatically.

Setting the ActivitySession control to None equates to disabling this service for a specific

web application (the default).

WASv6_LPS_ActivitySession.ppt Page 13 of 17

Here, you see how you can use the Rational Application Developer to set the caching

options for EJBs. In particular, this example shows how to scope the EJB activation to the

ActivitySession boundaries.

WASv6_LPS_ActivitySession.ppt Page 14 of 17

You can choose between the local transaction containment scenarios and the local

transaction enlistment. Rational Application Developer allows you to edit certain extended

deployment descriptors that regulate the behavior of local transactions with respect to

ActivitySessions.

If the local transaction boundary value is set to ActivitySession, a single local transaction

can survive multiple method invocations, allowing the container to extend the normal

lifecycle of a local transaction. The resolution-control can be either Container or

Application. If you set this value to Container, the application server will take care of

starting and committing local transactions. In this case, the ActivitySession will enlist the

local transactions. If you set it to Application, it’s up to the programmer to control the

transaction boundaries and therefore to commit or rollback those transactions. This

scenario corresponds to the Containment approach.

Notice the unresolved action parameter. This parameter can be set to either commit or

rollback, and will determine what happens to any local transaction that wasn’t yet

completed (committed or rolled back) at the time the ActivitySession completed. Consider,

for example, a travel reservation application where local transactions are controlled by the

programmer. The user has made a reservation, but has not yet clicked the final

confirmation button, causing the local transaction to remain uncommitted. For some

reason, the connection becomes unavailable, and after a certain period of time, the

ActivitySession expires. The “unresolved action” value determines how that pending

reservation will be treated. If you specify “commit”, the transaction will be committed and

the reservation implicitly confirmed. If you choose “rollback” the reservation will

be cancelled.

WASv6_LPS_ActivitySession.ppt Page 14 of 17

WASv6_LPS_ActivitySession.ppt Page 15 of 17

The following section will summarize.

WASv6_LPS_ActivitySession.ppt Page 16 of 17

In this presentation you learned about Last Participant Support and ActivitySessions

extensions. You were also provided with usage scenarios to help you understand how you

might be able to use this functionality in your own applications.

WASv6_LPS_ActivitySession.ppt Page 17 of 17

