
WASv6_DynamicCaching.ppt Page 1 of 32

This presentation will focus on Dynamic Caching in WebSphere® Application Server.

WASv6_DynamicCaching.ppt Page 2 of 32

The goals for this presentation are to introduce you to the dynamic caching feature that is

a part of the WebSphere Application Server. The presentation will also introduce you to

monitoring tools that can be used to tune and monitor your Dynamic Cache. The goal is

also to point out any differences between Version 5 and Version 6 along the way.

WASv6_DynamicCaching.ppt Page 3 of 32

The agenda for this presentation is to discuss the Dynamic Caching functionality,

Administrative Console settings, and monitoring tools that can be used to monitor and tune

dynamic cache.

WASv6_DynamicCaching.ppt Page 4 of 32

This section will discuss what the Dynamic Caching functionality provides in WebSphere

Application Server.

WASv6_DynamicCaching.ppt Page 5 of 32

Dynamic caching is a built-in WebSphere service that stores generated application content

to memory or disk so that subsequent requests can be served by using the already

generated content. This increases the performance of the Application Server, because it

does not have to go through the steps of reprocessing each step over and over again.

Instead it can just grab the already generated result from cache and return that data. Ideal

contents to cache are those that are expensive to reproduce, but do not change frequently.

For example, you may want to cache mutual fund price lookups for a brokerage

application.

Dynamic caching was designed to be a non-intrusive caching solution. Generally, using

dynamic caching is as simple as enabling the dynamic caching service and defining cache

policy files, named cachespec.xml, within your application. You will need to write code

within your application when you want to cache WebSphere command objects or Java™

objects. Enabling and configuring your application for caching will be discussed later on in

the presentation.

Dynamic caching has built-in invalidation support. Cache invalidation ensures that your

cache stays fresh and consistent with minimal effort on your part. To enable invalidation

within your cache you can define invalidation rules within your cache policy files, or it can

be done programmatically within your application through the provided API.

WASv6_DynamicCaching.ppt Page 6 of 32

Dynamic cache is capable of storing many different types of content. In Version 6, the ability to additionally
cache Tiles and Struts pages and fragments has been added.

Dynamic cache can be used to store either whole pages or fragments of generated pages from Servlets,
JSPs, Struts or Tiles. When storing Tiles to cache it is important to note that the “flush=true” attribute needs
to be used along with the “tiles:insert” tag. This is the same behavior as caching JSP fragments. The cache
policy file cachespec.xml is used to cache servlets, JSPs, Struts, and Tiles. An example of when you may
want to cache a JSP response could be a customer’s account for a shopping application or a brokerage
application. The customer’s account information in this example would be something that stays fairly static
and would not require a lot of updating.

Dynamic caching can be used to store WebSphere command objects. To cache WebSphere command
object you will need to extend your command objects using the CacheableCommandImpl abstract class.
After you have written your command object to be cacheable, you will need to add entries to your
application’s cache policy file that describe how to cache the command object. An example of a command
object that could be cached could be a file system lookup. If the lookup is one that is commonly used in your
application you can avoid the expense of having to recreate the lookup and just reuse it throughout your
application.

Dynamic caching can be used to store Java objects. Caching Java objects within your application requires
that you use the provided cache APIs provided with WebSphere Application Server. The cache policy file is
not involved with caching Java objects. An example of a type of Java object you may cache would be EJB
Entity Beans.

Dynamic caching can be used to store Web Services responses. Web Services responses can be cached in
several ways, ranging from using just the SOAP action or the entire SOAP envelope as the cache identifier.
The cache policy file is used to cache Web Services responses. An example of when you may want to cache
a Web Service response would be if you had a Web Service that just returned your company’s current stock
value.

WASv6_DynamicCaching.ppt Page 7 of 32

The diagram in the slide attempts to outline three different caching scenarios. In the first

scenario, the request is served from the external cache. This saves the HTTP server and

Application Servers from having to process the request. In the second scenario, the

appropriate response for the request can not be served from the external cache. The

request then passes through the HTTP server in route to the Application Server’s Web

container. Before the Web container begins processing the request, dynamic cache is

checked for a matching response. In this case a matching response is found and returned.

This saves the Application Server from having to send the request to EJB container for

further processing. In the third scenario, the request can not be served from either the

external cache or from the cache residing on the first Application Server. In this case, the

request needs to move throughout the entire system. It should be noted, however, that as

the response leaves the system it may be stored in cache somewhere along the way so

that subsequent requests will benefit from the generated response.

WASv6_DynamicCaching.ppt Page 8 of 32

The next section will discuss additional functionality that is available when using the

Dynamic Caching service.

WASv6_DynamicCaching.ppt Page 9 of 32

WebSphere Application Server includes support for controlling edge of network caches.

Edge of network caches are those caches which exist outside of the Application Server.

Edge of network caches allow responses to be served to incoming requests before they

ever reach your Application Server. This results in less network traffic and load on your

Application Server. When the Application Server is properly configured it is capable of

invalidating entries within the supported edge of network solutions.

WebSphere Application Server supports several different edge of network solutions. It

currently has support for the IBM HTTP server for distributed platform’s Fast Response

Cache Accelerator or FRCA cache, WebSphere HTTP server plug-in for distributed

platforms’ Edge Side Include Fragment Processor and the IBM Edge Server. In addition to

the IBM supported solutions, WebSphere Application Server also supports other third party

edge of network caching solutions.

WASv6_DynamicCaching.ppt Page 10 of 32

The diagram on this slide shows where the edge of network solutions discussed in the

previous slide fit into a WebSphere Application Server environment.

WASv6_DynamicCaching.ppt Page 11 of 32

The dynamic content provider allows fragments that contain dynamic content to be

cached. An example of where this can be used is helpful in this situation. Pretend that you

have a home page that contains all static content except for a date and time stamp that is

updated each time a user accesses the home page. In previous versions of WebSphere

Application Server you would not be able to cache this page because the response would

need to be recreated each time the page is requested. In Version 6, you are now able to

cache the static portion of the page and have the Application Server generate the dynamic

content when the page is returned.

Again how the dynamic content provider works outside of the example is as follows: When

the servlet response is generated it adds a dynamic content provider to the response

object. The response object is then in turn cached and returned. When another user

requests the same response, cache loads the response and the appropriate dynamic

content providers are called to generate the remainder of the content for the response.

The response is then forwarded to the user.

WASv6_DynamicCaching.ppt Page 12 of 32

This slide further expands on the example given in the previous slide. Notice that in the

performTest method a dynamic content provider is being added to the servlet's response

between the two System.out.println lines. The DynamicContentProviderImpl class will

generate the dynamic portion of the servlet response – in this case the class will output a

time stamp to the servlet response object. It is important to note that the two lines

generated in the performTest method will be cached and will not change each time the

response is generated. The time generated by the DynamicContentProviderImpl class,

however, will change each time the servlet is requested.

WASv6_DynamicCaching.ppt Page 13 of 32

Cache instances allow you to define additional locations that can be used to store,

distribute and share cached objects. These cache instances are defined in addition to the

default dynamic cache that is part of the WebSphere Application Server. The ability to

define additional cache instances allows WebSphere Application Server to become a more

configurable solution that is capable of adapting to more customers environments. For

example, in your brokerage application you may want to store your cached stock quote

lookups in a separate cache instance than WebSphere Application Server’s default

dynamic cache. In addition to being more configurable, the ability to create separate

caches also leads to a performance gain. Instead of storing all of your cached items to one

large cache, you are now able to create several smaller caches which will result in faster

cache lookups.

There are two different types of cache instances available in WebSphere Application

Server. Both will be mentioned on this slide and then covered in detail in later slides. The

first type of cache instance is the servlet cache instance. Servlet cache instances were not

available in WebSphere Application Server Version 5. It is important to note that servlet

cache instances are an extension of the cache instance support that was available in

WebSphere Application Server Version 5. The second type of cache instance is the object

cache instance. Object cache instances were available in WebSphere Application Server

Version 5 but were know as “cache instances” in that release. In Version 6 that same

functionality has been renamed “object cache instances” and further enhanced. The

upcoming slides will discuss the enhancements made to object cache instances.

WASv6_DynamicCaching.ppt Page 14 of 32

Servlet cache instances allow applications running on WebSphere Application Server to

store their cached objects in a cache other than the default dynamic cache. The servlet

cache instance support was derived with the Portal and Commerce servers in mind, but

can also be utilized by web applications running on the Application Server. Servlet cache

instances are used to store whole pages or fragments of pages of servlets, JSPs, Struts,

or Tiles; WebSphere command objects; or Web Services responses.

To utilize servlet cache instances in your application, you must first create a servlet cache

instance within the Administrative Console. After the cache instance has been created,

you need to add the cache-instance tag to your cache policy file. The cache-instance tag

allows you to specify the JNDI name of the servlet cache instance where cached objects

should be stored. The cache-instance tag can appear in the same cache policy files

multiple times. The cache-instance tag is optional – the absence of the tag means that

cached objects should be stored to the default dynamic cache.

WASv6_DynamicCaching.ppt Page 15 of 32

Object cache instances also allow applications running on the WebSphere Application

Server to store cached objects to locations other than the default dynamic cache. Object

cache instances are used to store Java objects. WebSphere Application Server provides

APIs that allow you to work with the dynamic cache within your application. WebSphere

Application Server also provides mechanisms for sharing cached objects between multiple

servers within a cluster.

Object cache instances can be created in two different ways. The first method involves

creating the object cache instance within your Administrative Console. The second method

involves using the cacheinstances.properties file to store the definition of object cache

instance with the application. Then when the application is installed on your Application

Server, the object cache instances are created as part of the installation process. The

second method is the preferred method of creating object cache instances because it

allows you to define the object cache instances along with the application. An important

thing to note here is that cacheinstances.properties file replaces distributedmap.properties

files from earlier versions of WebSphere Application Server. The distributedmap.properties

file is being deprecated in Version 6 – which means that it will only be supported for the

three next major releases of WebSphere Application Server.

WASv6_DynamicCaching.ppt Page 16 of 32

This table further clarifies what was discussed on earlier slides and also introduces the

new object cache APIs. As you can see from the table, the servlet cache instances

functionality was introduced in Version 6. Also from the table note that the object cache

instance functionality existed in both WebSphere Application Server Version 5 and Version

6, although it was named cache instances in Version 5. Also note that two new APIs have

been added for Version 6. Both of the APIs will be introduced on an upcoming slide.

WASv6_DynamicCaching.ppt Page 17 of 32

Both of the APIs listed on the slide are new for Version 6. The DistributedObjectCache

interface implements both the DistributedMap and DistributedNioMap interfaces and

should be used when writing applications that access cache instances. The

DistributedNioMap interface was also added. The DistributedNioMap interface provides a

high performance map that was designed to store java.nio.Buffer objects.

WASv6_DynamicCaching.ppt Page 18 of 32

Cache replication allows WebSphere Application Server to share cached objects across

multiple servers within the same cluster. What this means is that cached data is generated

one time on one server and copied to the rest of the servers in the replication domain or

cluster. This results in savings of time and work for the cluster as a whole.

Cache replication is more configurable in WebSphere Application Server Version 6. Object

cache instances can now define their own replication settings. In Version 5, all object

cache instances on a server had to share the same set of replication settings.

WASv6_DynamicCaching.ppt Page 19 of 32

The next section will discuss how to enable the Dynamic Caching functionality within

WebSphere Application Server.

WASv6_DynamicCaching.ppt Page 20 of 32

The first step in using dynamic caching in WebSphere Application Server is validating that is enabled on your

server. By default the dynamic caching service is enabled on a new install of WebSphere Application Server.

To access the dynamic caching service, navigate to the Dynamic Cache Service panel within the

Administrative Console. From this panel you can configure options such as the number of items that can be

stored in dynamic cache or whether or not cache overflow should be pushed to disk. You can also configure

any edge-of-network solutions from this panel. After you have made your changes to the dynamic cache

service, you will need to restart the server in order for the changes to take effect.

If you want to enable the ability to cache servlets, JSPs, Tiles, Struts, WebSphere command objects, or Web

Services responses you will need to enable servlet caching. By default the servlet caching feature or

dynamic caching is disabled on a new installation of WebSphere Application Server. To enable servlet

caching, navigate to the Web Container Settings panel within the Administrative Console. After you have

enabled servlet caching you will need to restart the Application Server in order for changes to take effect.

The next step in enabling and configuring dynamic cache is to optionally create any needed servlet and

object cache instances for your application. Remember that cache instances provide additional locations

where cache objects can be stored outside of the default dynamic cache.

After you have configured dynamic caching, the last step is incorporating the correct cache policy files and

code into your application to the dynamic cache service.

The demonstration that is available on this slide takes you through the different dynamic cache configuration

options and where they are located within the Administrative Console. To view the demonstration, pause this

presentation and click the Show Me icon.

WASv6_DynamicCaching.ppt Page 21 of 32

The cachespec.xml file, defines the rules used to cache servlets, JSPs, Tiles, Struts,

WebSphere command objects, and Web Services responses. The file defines which items

should be cached, how their cache identifiers should be generated, which objects they are

dependent on (if any) and when a cached object should be invalidated or removed from

cache.

The cachespec.xml file can be stored either on your server in the profile's property

directory, or with your application in the WEB-INF directory of your Web application or the

META-INF directory of your enterprise bean. When the cachespec.xml file is stored within

your application, no additional administrative configuration is needed. Storing the

cachespec.xml file within the application is the recommended way of storing cache policy

file.

See the WebSphere Application Server Information Center for more information on the

cachespec.xml file.

WASv6_DynamicCaching.ppt Page 22 of 32

This slide displays an example taken from a simple cachespec.xml file. The class and

name tags in the example indicate that the cache policy file was written to cache

responses from the HRServlet servlet. The cache-id tag is used to define which responses

(in this case) to cache and how to generate their cache identifiers. The cache-id tag, in this

case, also contains an invalidation rule and a priority value. The component tag is used to

generate the cache identifier for the cached object. The cache identifier should be defined

in a way that generates a unique identifier for the cached object. Rules for cache identifier

generation should be defined in a way such that duplicate cache IDs are not generated.

This is because the cache ID is used to access the cached object, and duplicate cache

entries would result in the loss of data integrity in your application. In this example, the

cache identifier is generated from the value of the hr_user parameter passed to the

servlet. The timeout tag defines the invalidation rule for this cache entry. In this example,

the value of zero indicates that the cached object will live in cache until it is removed by

the least recently used algorithm. The priority tag defines the priority of the cached object

in the cache. The priority value is used by the cache’s least recently used algorithm to

determine which items should be removed from cache when cache is full.

WASv6_DynamicCaching.ppt Page 23 of 32

The next section will discuss the monitoring tools that you can use to monitor and analyze

the performance and contents of your caches.

WASv6_DynamicCaching.ppt Page 24 of 32

The Performance Monitoring Infrastructure, or PMI, provides a Dynamic Cache module

that allows you to monitor cache performance through your PMI clients. The list provided

in this slide is an incomplete list of the performance counters that are available for dynamic

caching. The complete list of performance counters can be obtained from WebSphere

Application Server Information Center. The dynamic cache performance data can then be

viewed using a PMI client, such as the Tivoli Performance Viewer.

WASv6_DynamicCaching.ppt Page 25 of 32

The dynamic cache monitor is a Web application. The cache monitor allows you to view

and control the servlet cache instances installed on your Application Server. Using the

cache monitor you can view basic usage statistics, the contents in the cache, and the

policies loaded for each cache instance available on the Application Server. Additionally it

is capable of looking at both the caches that are located on your hard disk and edge-of-

network caches. The cache monitor is useful in debugging which of your defined policies

were loaded and whether the correct objects are being cached. It is an integral part in

debugging problems that occur with dynamic cache.

By default, the cache monitor application is not installed on a new WebSphere Application

Server installation. The application can be installed from the installableApps directory at

the root of your WebSphere Application Server installation. After the application is

installed, it can be accessed from the URL shown here.

WASv6_DynamicCaching.ppt Page 26 of 32

This slide shows the Cache Statistics view. This view displays the general usage statistics
for the selected cache instance. Notice that the cache instance that is selected is the
“baseCache” instance - this is dynamic cache’s default cache instance. A majority of the
statistics in this view are also captured by the dynamic cache PMI module discussed
earlier.

WASv6_DynamicCaching.ppt Page 27 of 32

This slide shows the Cache Contents view. This view displays the cached objects that are

currently in the selected cache instance. If you scroll to the right of the window you can

see additional information such as the cache policy that was used to create the cached

object and amount of time before the object is removed from cache. You can also click on

each one of the entries to see the object that is being cached. For example if you click on

a cached HTML page, you will be able to see the HTML page that has been cached. The

information provided in this view makes it very useful in determining whether the correct

content from your application is being cached.

WASv6_DynamicCaching.ppt Page 28 of 32

This slide shows the Cache Policies view. This view displays the cache policy files or

cachespec.xml files that are being used for the selected cache instance. You can click on

the links in this page to see details on generating each one of the cache entries. The

information provided in this view is useful in determining whether the policies that you

have defined on your server or within your application are being implemented correctly.

WASv6_DynamicCaching.ppt Page 29 of 32

The next section will summarize the points discussed in this module.

WASv6_DynamicCaching.ppt Page 30 of 32

In summary, the dynamic cache service is a WebSphere Application Server built-in service

that provides caching functionality for J2EE applications. By using dynamic cache, you can

enhance application performance by not having to regenerate dynamically created content

each time that it is accessed. The dynamic caching solution provided by WebSphere

Application Server has been designed to be as non-intrusive as possible. The service can

often be utilized with only minimal changes to your application. Finally, dynamic caching

can be used to store whole pages or fragments of pages for servlets, JSPs, Struts or Tiles,

WebSphere command objects, Java objects, and Web Services responses.

WASv6_DynamicCaching.ppt Page 31 of 32

