
WASv6_J2EE14_WebServices.ppt Page 1 of 39

®

IBM Software Group

© 2004 IBM Corporation

Updated May 5, 2005

IBM® WebSphere® Application Server V6.0

Java™ 2 Enterprise Edition (J2EE) 1.4

Web Services Overview

This presentation will focus on the J2EE technologies used for Web Services. A different
presentation will focus on the specifics of implementing Web Services using WebSphere
Application Server.

WASv6_J2EE14_WebServices.ppt Page 2 of 39

IBM Software Group

2

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Goals

�Provide an overview of

�J2EE 1.4 Web Services (JSR 101 and 109)
implementation

�Web Services Interoperability (WS-I)

�WS-Security

This presentation covers the core concepts that make up Web Services. This includes the
base J2EE specifications that deal with Web Services, JSR 101 and JSR 109. The
presentation concludes by explaining the basic idea of Web Services Security and the

benefits offered by Web Services Interoperability.

WASv6_J2EE14_WebServices.ppt Page 3 of 39

IBM Software Group

3

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Agenda

� J2EE 1.4 Web Services

�JSR 101 (JAX-RPC) Overview

�JSR 109 (Web Services in J2EE) Overview

�Web Services Interoperability (WS-I)

�SOAP API for Attachments in Java (SAAJ) 1.2

�WS-Security

First the concepts behind JSR 101 and 109 will be discussed, which together make up the
backbone of Web Services standards in J2EE. Next is a look at the standards for Web
Service Interoperability. These are guidelines which, when adhered to, make your Web

service interoperable with other products. A discussion of the SOAP API for Attachments
in Java follows. This is an underlying API that provides methods for accessing SOAP
messages, the XML format used for Web Service communications. Finally, the Web

Services Security specification used to secure communication between Web Services will
be covered.

WASv6_J2EE14_WebServices.ppt Page 4 of 39

IBM Software Group

4

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

J2EE 1.4 Web ServicesJ2EE 1.4 Web Services

Section

This section provides an explanation of how Web Services fit within the J2EE 1.4
specification.

WASv6_J2EE14_WebServices.ppt Page 5 of 39

IBM Software Group

5

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

J2EE 1.4 Web Services

�Web Services are now an integral part of J2EE 1.4

�Support provided via following standards

�JSR 101 (JAX-RPC) – provides standard programming

model for Web Services based on WSDL and SOAP

�JSR 109 – provides standard deployment model for Web

Services applications (provider and requestor)

�WS-I Basic Profile 1.1 – promotes Web Services

interoperability across J2EE and non-J2EE platforms

�SAAJ (SOAP with Attachments API for Java) 1.2 –Allows
developers to write SOAP messaging applications directly

rather than use JAX-RPC

With the adoption of a number of Web Service specifications, Web Services have become
an important part of the J2EE standard. Web Services provide a standardized means to
expose processes for remote invocation. Web services support the adoption of a service

oriented architecture, an architectural design by which you create a grouping of distinct
services. Web Services provide the means for these services to communicate, supporting
a heterogeneous environment.

There are a number of standards currently included with the J2EE specification for Web
Services support. There are many more proposed specifications for Web Services that

are making their way through the community adoption process. As these are hammered

out and agreed upon they will be included in the specifications.

This discussion focuses on four current standards. The JAX-RPC, or Java API for XML

based Remote Procedure Calls dictates the programming model and APIs that are used

for invoking and creating Web services. JSR 109 or the J2EE Web Services standard
dictates how Web services operate within the J2EE environment. The WS-I standard is a
more recent addition promoting interoperability between different vendors of Web services,
helping to ensure the success of Web Services in heterogeneous environments. Finally,

the SAAJ standard focuses on the programming model and APIs for dealing with the XML

based SOAP messages.

WASv6_J2EE14_WebServices.ppt Page 6 of 39

IBM Software Group

6

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

JSR 101 and 109 Overview JSR 101 and 109 Overview

Section

This section will provide more details on the core Web Services specification in J2EE,
starting with JSR 101 and 109.

WASv6_J2EE14_WebServices.ppt Page 7 of 39

IBM Software Group

7

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

JAX-RPC APIs

JAX-RPC (JSR 101): Objectives

� Java API for XML based Remote Procedure Call (JAX-RPC) formalizes the
procedure for invoking Web Services in an RPC-like manner

� Defines Client side APIs to access a Web Service

� Defines mapping model between WSDL, XML and Java

� Defines a Handler model to the client and the server side to allow your custom
code to intercept the request and the response

Client
Application

Service Proxy SOAP
Runtime

Web Service
Runtime

Java
Component

WSDL

SOAP
Mapping XML

To Java

Mapping Java
to XML

JAX-RPC defines the programming model for Web Services invocation. JAX-RPC defines
client side APIs for accessing Web services. These APIs assume that a WSDL document
is available at the time the service is invoked on the client. WSDL documents are used to

describe the various aspects that make up a service invocation. The specification defines
how information is mapped between Java, WSDL documents and XML in the SOAP
message. For instance, the WSDL document contains a port type, which must be mapped

to a Java artifact. The port type will be mapped to a Service Endpoint Interface, which is a
particular Java interface generated for Web services.

JAX-RPC specifies a number of ways to create Web service requesting client applications.

One possibility is to directly code to the JAX-RPC APIs, which would allow the client to run
outside a J2EE container. This is called an unmanaged client. Alternatively, a client can

run within the J2EE container as specified by JSR 109, or J2EE Web Services. This will
provide a layer of abstraction and shield the client from the actual implementation details

of the JAX-RPC APIs.

The specification also includes a Handler model for writing pieces of code that can
intercept and modify information in the Web services message. Usually these will be

written with the help of the SAAJ APIs, which are used to access the XML in the SOAP

message.

WASv6_J2EE14_WebServices.ppt Page 8 of 39

IBM Software Group

8

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

JAX-RPC: Mapping between WSDL and Java

� JSR 101 defines a standardized mapping model from

WSDL to Java artifacts

�WSDL Port Type maps to Java Service Endpoint Interface (SEI)

�WSDL Service maps to a Java Service Interface

�WSDL complex elements/parts maps to a Java Bean

Java
Component

Service
Endpoint

Interface (SEI)

Service
Interface

Java
Bean

<wsdl:portType name=“Warehouse”>
<wsdl:Operation name=“Order”>

….
</wsdl:Operation>

</wsdl:portType>

<wsdl:service name=“WHService”>
<wsdl:port binding=“…..”>

<wsdlsoap:address location=“….”>
</wsdl:port>

</wsdl:service>

Java
Bean

Mapping

Mapping

This slide provides a more detailed description of how information in the WSDL document
is mapped to Java artifacts in the runtime. The port type in WSDL gets mapped to the
service endpoint interface. Within the port type are a number of operations, which are

mapped to Java bean implementations. There is also a service type that contains a port
binding address location, which represents the address of the Web Service. This maps to
a service interface that fronts the endpoint interface. These mappings are defined within

the JSR 109 specification, along with other mapping rules.

In particular, JAX-RPC defines mappings between Java types and XML. JAX-RPC clients

and Web service implementations deal with Java types, yet they communicate using XML

in SOAP messages. That means that Java types have to be mapped to XML in order to
be communicated. This process is called serialization, and the JAX-RPC standard

dictates how Java types will be mapped to XML types by the runtime.

WASv6_J2EE14_WebServices.ppt Page 9 of 39

IBM Software Group

9

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Data Mapping between XML and Java

�SOAP data flows as XML elements

�Both JAX-RPC clients and providers perform

conversions to change the XML data into Java types and
the reverse

� Referred to as serialization or deserialization

JAX-RPC

Provider

JAX-RPC

Client

Java to XML

Mapping

XML to Java

Mapping

XML to Java

Mapping

Java to XML

Mapping

Request

Response

SOAP

Messages

1 2

34

This slide shows an example of the serialization and deserialization that occurs during a
Web Service call. As the slide shows, during a standard request and response cycle there
are four conversions that must occur. First, the client calls the target service, when the

Java types understood by the client are serialized into XML types. When that is received
by the Service provider, the XML message is deserialized back into Java types. The last 2
processes occur when a request message is sent back to the client.

WASv6_J2EE14_WebServices.ppt Page 10 of 39

IBM Software Group

10

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

JAX-RPC: Handlers

� Provide a mechanism for intercepting the SOAP message

� SOAP message handlers intercept SOAP messages in both

the request and response

�Can perform additional processing of the SOAP message

�Can examine and potentially modify a request before it is processed

by a Web Service component.

�Can examine and potentially modify the response after the component

has processed the request

Service
Requester

Service
Provider

H
a

n
d

le
r

H
a

n
d

le
r

SOAP

JAX-RPC handlers provide a way for intercepting the SOAP requests and responses
before they actually get to the target destination or method.

There are some things the handlers can do and some they cannot do. They can modify a
request. They cannot change the SOAP message or the Web services engine will send
back a Web services SOAP fault. Handlers are very service specific. Multiple handlers

can be defined for specific services on the provider side or on the client side, or both. A
Handler must not change the message in any way that would cause the previously
executed authorization check to execute differently.

The J2EE-managed environment constrains the possible actions taken by handlers. For
example, handlers cannot change the target of a request or change the operation.

Handlers cannot change the message part types and number of parts. On the server,
handlers can communicate with the business logic of the port component using the

MessageContext. On the client side, handlers have no means of communicating with the

business logic of the client.

WASv6_J2EE14_WebServices.ppt Page 11 of 39

IBM Software Group

11

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

J2EE Server

J2EE Server

JAX-RPC APIs

J2EE Container

J2EE Container

J2EE Container

Web Services for J2EE (JSR 109): Objectives
� Web Services for J2EE allows for JAX-RPC Web Services in a J2EE

environment

� Defines a standard deployment model for Web Services for J2EE
components

�How a J2EE Server component can be described as a Web Service

�How a J2EE Client component can be described for calling Web
Services using JAX-RPC

J2EE Container

Client
Application

Service Proxy Web Service
Runtime Web Service

Runtime

Web Service
(EJB, Java Bean)

WSDL

SOAP
Mapping XML

To Java

Mapping Java
to XML

Deployment
Descriptors

Deployment
Descriptors

Thus far JSR 101, which defines the basic programming model, has been discussed.
However, this JSR does not describe how to deploy those applications from a J2EE
enterprise application point of view so that there are commonalities among different

application server vendors. In WebSphere V5.0.2, JSR 109 was fully supported. This JSR
defines a standard deployment model for Web Services. Given a Web service provider,
which is a Java bean or an EJB, this body of standard APIs defines standard deployment

descriptors that describe the Web services to an Application Server. JSR 109 also defines
special deployment descriptors for client applications, so that they can look up and invoke
a Web Service that is deployed on the J2EE Application Server. The programming model
is kept consistent, as far as possible, with the EJB programming model where applications
can look up an installed EJB and invoke it. Similarly, Web Services requesters would be

capable of looking up and invoking a deployed Web Service.

WASv6_J2EE14_WebServices.ppt Page 12 of 39

IBM Software Group

12

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Web Services Containers

� Web Services for J2EE specifies how Web Services will

operate within the J2EE runtime

� Specifies container model for J2EE Web Services

�Java classes reside in the Web container

�EJBs must be stateless session EJBs and reside within the EJB

container

J2EE Server
J2EE Server

Run Time
Support

Run Time
Support

Requestor Provider

DD DD

JAX-RPC

JSR 109, or the Web Services in J2EE standard works with JAX-RPC to define Web
Services in J2EE environments. JSR 109 specifies the deployment descriptors that are
generated for Web Services, as well as how they operate within the J2EE runtime. The

deployment descriptors contain standard deployment information for services as well as
security configurations.

JSR 109 also specifies the model for how Web Services operate within the J2EE container
model. Depending on the type of Web Service, they will operate within either the Web
container or the EJB container. Java class implementations that have been exposed as a

Web Service reside within the Web container, while stateless session beans reside within

the EJB container.

WASv6_J2EE14_WebServices.ppt Page 13 of 39

IBM Software Group

13

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Service Interface

� Container’s primary responsibility is to route SOAP messages

�Also provides support for lifecycle management, concurrency management
and security

� A Service Endpoint Interface (SEI) maps the portType element of the
service’s WSDL to a Java representation

�Binds the WSDL representation to the port

�Provides an implementation of the service’s interface

Container

Service
Interface

Port

Client

S
E
I

The primary job of the J2EE container, when dealing with Web services, is to route
incoming SOAP messages to the appropriate Web service implementation. When a Web
service is created and installed with a J2EE environment, it is fronted by an HTTP servlet

which acts as a router for incoming SOAP requests. The container routes these requests
to the appropriate Service Endpoint interface for the service. The container will also
manage security, life cycle, and concurrency management, just as it would for any other

J2EE application.

In keeping with the J2EE client programming model, a Web service client is remotable and

provides local and remote transparency. The Web service port provider and the container

that the port runs in define how a client sees a Web service. The client always accesses
the port and is never passed a direct reference to a Web service implementation. A J2EE

Web service client remains unaware of how a port operates and must concern itself only
with the methods a port defines. Those methods combine to make up a Web service

public interface. In addition, a client must consider access to a Web service port as

stateless across service invocations. As far as the client is concerned, a port lacks a

unique identity and a client has no way of determining if it communicates with identical
ports across service invocations.

WASv6_J2EE14_WebServices.ppt Page 14 of 39

IBM Software Group

14

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Two-Step Development and Deployment

� Web Services for J2EE outlines a 2-step process for

defining and deploying Web Service applications

� Step 1 – Define Java artifacts as Web Service

�webservices.xml, SEI (Service Endpoint Interface), JAX-RPC

mapping file and WSDL

� Web Service definition is not specific to any runtime platform or vendor

� Resulting EAR file is completely J2EE compliant and independent of any vendor

� Step 2 – Enable and Deploy Web Service for a specific

platform

�Helpers, serializers, and deserializers, created specific to the runtime

environment

The Web Services for J2EE specification or JSR 109, describes a two-step process for
creating and deploying a Web Service Application. Step one involves the process of
defining Java artifacts as a Web Service. During the process the webservice.xml,

service endpoint interface, and WSDL file are created. These will be packaged along
with the application into a J2EE EAR, this should be independent of any vendor
specific information. The second step involves deploying the Web Service application

into a runtime. At this point various helpers and serializers will be created specific to
the runtime environment.

WASv6_J2EE14_WebServices.ppt Page 15 of 39

IBM Software Group

15

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

J2EE 1.4 DD Files and IBM Specific Files

�New deployment descriptors for Web Service
provider:

�webservices.xml

�EJB, Web and Application Client module
deployment descriptors (DD) updated for Web
Services Client information

�References to Web services are contained in the

web.xmlweb.xml, ejbejb--jar.xmljar.xml, and applicationapplication--client.xmlclient.xml files

as service-refs

�Vendor specific bindings/extensions needed to
support Web Service on runtime

A webservices.xml deployment descriptor file must be included within the EAR file that
contains the service provider’s implementation artifacts. In particular, that file will be
included within a WAR file if the service is implemented by a Java bean, or within an EJB

JAR file if the service is implemented by a stateless Session EJB.

A service requester application, whether it is a J2EE client, a Web Application, or another

EJB, must include the webservicesclient.xml deployment descriptor.

Both requester and provider applications must include a mapping metadata xml file. This
file is needed to map the complex XSD elements found in the WSDL file to the appropriate
Java beans and vice versa. Just like in the EJB module, where there were IBM specific
files. There are also IBM proprietary bindings and extensions for Web Services as well.

These are aspects that are not defined within the specification but are required to run the
EJB within the Application Server. These will be discussed further in the Web Services

Security module because these files are where the WS-Security information is included.

WASv6_J2EE14_WebServices.ppt Page 16 of 39

IBM Software Group

16

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Web Services Files in J2EE 1.4 Application

Web

DD

EJB

Module

JAR file

Web

Module

WAR file

Client

Module

JAR file

J2EE

Application

EAR file

Installed

RARs

IBM Bnd

Schema

Map

Schema

Attributes

Table

DDL

was.policy

(Java2 Sec)

IBM

Bnd/Ext

HTML,

GIFs,

etc.

Servlet

JSP

Application

DD

Web
Services

DD

Client

Classes

EJBs

IBM

Bnd/Ext

IBM

Bnd/Ext

EJB

DD

WS IBM

Bnd/Ext

Web
Services

DD

Client

DD

WS Client
IBM Bnd/Ext

WSDL <-> Java
Mapping Files

WSDL <-> Java
Mapping Files

WS Client
IBM

Bnd/Ext

WS IBM
Bnd/Ext

WS Client
IBM Bnd/Ext

DD = Deployment Descriptor
WS = Web Services
Bnd = Binding File
Ext = Extension File

= WS related files

This is what a Web services enabled J2EE application looks like.

There are three potential modules, namely the EJB, WAR, and client modules, in a J2EE
1.4 application, four if you consider the resource adapter.

The colored boxes represent the standard J2EE files. The gray boxes represent IBM
specific artifacts that are needed.

For example, look at the EJB module, represented by the pink box. If you have exposed
an EJB stateless session bean as a Web service provider, you will need to create a Web
services deployment descriptor and the IBM extensions and bindings for that Web service

provider. This can be done using IBM® Rational® Application Developer.

WASv6_J2EE14_WebServices.ppt Page 17 of 39

IBM Software Group

17

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

JSR 101 and 109 Client CreationJSR 101 and 109 Client Creation

Section

The following slides explain the steps involved with creating a J2EE compliant client.

WASv6_J2EE14_WebServices.ppt Page 18 of 39

IBM Software Group

18

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Understanding Server Side Programming Model
First
� Port defines the Server view of

Web Service provider

� Port component services the

operations defined in WSDL

� Port component has Service

Endpoint Interface and Service

Implementation that implements

the Interface

� Service Implementation can be

�Stateless Session EJB

�Java Bean (also referred to as
JAX-RPC Service Endpoint)

J2EE Web Container

Port

Web
Services

Client

WSDL

JAX-RPC
Service

Endpoint

Service
Interface

L
is

te
n

e
r

J2EE EJB Container

Port WSDL

Stateless
Session

Bean

Service
Interface

L
is

te
n

e
r

Web
Services

Client

The first diagram shows a J2EE Web container, which is used when there is a Java bean
as a service provider. When a Java bean is the service provider, this is referred to as
a JAX-RPC service endpoint provider. The second diagram shows the J2EE EJB

container, in which there is a stateless session bean as the service provider. The
listeners are the components that are different. In the second diagram, the listener can
be either a servlet for the SOAP/HTTP transport or a message-driven bean that is

generated by the endpoint enabler if the service uses SOAP/JMS as the transport
mechanism.

WASv6_J2EE14_WebServices.ppt Page 19 of 39

IBM Software Group

19

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Types of Clients

� JAX-RPC Client (Stand-alone Java Client)

�Defined by JSR 101, not defined by JSR 109

�Also called “unmanaged client”

�WSDL definition of a Web Service provides enough

information for a Stand-alone client to be built and run

� Web Services for J2EE Client

�Defined by JSR 109

�Also called “managed client”

�Runs in a J2EE Container and uses J2EE run-time to lookup

and invoke a Web Service, examples include:

�J2EE Application client

�Web component (Servlet/JSP)

�EJB component

There are two types of basic Web Services clients.

The first type is the stand-alone Java client, which is also referred to as a JAX-RPC client.
These clients directly inspect a WSDL file and formulate the calls to the Web Service
by using the JAX-RPC APIs directly. These clients are packaged as plain Java JAR
files, which do not contain any deployment information. These clients do not run in any

J2EE container, and are therefore referred to as “unmanaged clients”. In order to
invoke these clients, ensure that the JAR file is in the CLASSPATH and then use the
Java command to invoke the program.

The second type is the JSR 109 client which runs inside a J2EE container. These clients
are packaged as EAR files and contain components that act as service requesters.

These components can be J2EE client applications, invoked using launchClient tool, or

they can be server side components, such as servlets or Session EJBs, which call out

to a Web Service. In both cases, these clients would use the JSR 109 APIs and
deployment information to lookup and invoke the service.

WASv6_J2EE14_WebServices.ppt Page 20 of 39

IBM Software Group

20

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

JAX-RPC Clients: Two Options

�The Service Interface methods can be
categorized into two groups:

�Stub/Proxy Method access to the Ports
� Service specific – client requires WSDL knowledge that has service

location included

� Service agnostic – client may have only partial WSDL definition

�Dynamic Invocation (DII) Method
� Used when a client needs dynamic, non-stub based communication

with the Web Service

�Client must always treat the Web Service
implementation as stateless

The methods defined for a service interface are also categorized into two groups. The first
assumes knowledge of the specific service being called, which requires knowledge of
portions of the WSDL document for the target service. The other method is more dynamic

and is used if the same client may connect to a number of service providers. Web Service
clients must always treat the Web service implementation as stateless.

WASv6_J2EE14_WebServices.ppt Page 21 of 39

IBM Software Group

21

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Web Services for J2EE Clients

� Client needs Web Service
Provider WSDL

� Uses JNDI lookup of Web
Service

�Gets the Service Interface

�From Service Interface
client gets a stub or dynamic
proxy or a DII Call object for
a Port

Context ctx = new InitialContext();
javax.xml.rpc.Service sqs = ctx.lookup(“java:comp/env/service/StockQuote”);
com.example.StockQuoteProvider sqp =
(com.example.StockQuoteProvider)sqs.getPort(portName,
StockQuoteProvider.class);

float quotePrice = sqp.getLastTradePrice(“ACME”);

J2EE Client Container

JNDI Context

A
p

p
lic

a
tio

n

Service
Interface

JAX-RPC
Service

Interface

Service
Interface

Stub

JAX-RPC
Implementation

In JSR 109, the client always uses the service provider’s WSDL file as a reference for
invoking a service. Then, based on the information stored in the bindings file, it will look
up a service using JNDI. It will get back a Service Endpoint Interface that can be used to

transparently invoke the service, either using a stub, or less commonly by using the
dynamic invocation. A reference to the Web Service implementation should never be
passed to another object. A client should never access the Web Service implementation

directly. Doing so bypasses the container’s request processing which may open security
holes or cause anomalous behavior. The client cannot distinguish whether the methods
are being performed locally or remotely, nor can the client distinguish how the service is
implemented.

WASv6_J2EE14_WebServices.ppt Page 22 of 39

IBM Software Group

22

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Benefits of J2EE Web Services Client

� J2EE Web Services Client programming model
closely follows J2EE programming model for
looking up external resources

�Simpler for J2EE developers

� J2EE Web Service Client uses a Service
Reference in the deployment descriptor to bind to
Service

�Easily configured as the service can change without
changing the client code

The benefits provided by the J2EE programming model for Web Service clients are listed
here. In particular, this method should be easiest for J2EE developers. A J2EE client also
references a service remotely, so that the actual location of the service can change, with

only minor updates needed to the J2EE client.

WASv6_J2EE14_WebServices.ppt Page 23 of 39

IBM Software Group

23

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

WSWS--I I
Web Services Interoperability Web Services Interoperability

Section

This section provides an explanation of the benefits of Web Services Interoperability
support.

WASv6_J2EE14_WebServices.ppt Page 24 of 39

IBM Software Group

24

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

WS-I

�Organization focused on promoting interoperability
between Web Services

�Main goal is to provide guidance in the
standardization of Web Services between different
platforms, applications, and programming
languages

�Defines profiles, which are a set of different
specifications

�WS-I Basic 1.1 Profile currently available

The Interoperability standard is put forward by the WSI organization, whose primary
purpose is to promote interoperability between Web Services. In theory, a Web
Service exposed on a .Net server should be able to be accessed no differently than a

Web Service exposed on a WebSphere or other J2EE server. This organization
provides standards to ensure that Web Services can interoperate across platforms and
languages. They do this by creating Profiles, made up of a grouping of specific

standards. So long as a Web Service is created to meet these profiles, they should
interoperate with any other server or language that supports that profile. Both IBM
Rational Application Developer and Eclipse provide support for creating Web services
that conform to the 1.0 profile.

WASv6_J2EE14_WebServices.ppt Page 25 of 39

IBM Software Group

25

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

WS-I Basic 1.0 Profile Contents

� HTTP V1.1
�Specific on HTTP errors and response codes

�must not require cookie support

� XML 1.0 and XML Schema 1.0
�May use any construct from Schema 1.0

� SOAP V1.1
�Use of SOAP encoding disallowed

�Specific on structure of fault and when to generate faults

� “Trailers” (element content after soap-env:Body) disallowed

�Use of SOAPAction, soap-env:actor clarified

� WSDL V1.1 with SOAP Encoding = Literal
�Exclude use of wsdl:import for XSD files

�Numerous spec clarifications

�Only one element in the Body of the element

� UDDI V2.0
�Established category to identify WS-I conformant entities

�Models must use WSDL as descriptive language

These are the various specifications that make up the WS-I Basic 1.0 Profile. Vendors
will strive to become WS-I Basic 1.0 compliant rather than claim compliance with the
individual specifications. By doing this, interoperability is more likely to be obtained

between different Vendors. Already there is conformance on the part of the major
vendors, including IBM, Microsoft™, Sun and others. The profile proscribes the
underlying technologies that should be used by vendors when including support for

Web Services. So the profile defines technology levels for HTTP, XML, SOAP, and
WSDL. These are the technologies used in describing and communicating in Web
services. The idea being that if these are kept standard across vendor
implementations, interoperability will be easier to achieve.

WASv6_J2EE14_WebServices.ppt Page 26 of 39

IBM Software Group

26

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

SAAJSAAJ
SOAP with Attachments API for Java SOAP with Attachments API for Java

Section

This section provides an explanation of the Soap Attachments API for Java.

WASv6_J2EE14_WebServices.ppt Page 27 of 39

IBM Software Group

27

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

SAAJ APIs
SAAJ APIs

J2EE Container

SAAJ

� SAAJ provides a standard set of APIs to send XML
documents (including attachments) over the Internet

� Similar to JAX-RPC but requires additional effort on the
client and server sides

J2EE Container

Client
Application

Service Proxy Web Service
Runtime

Web Service
Runtime

Web Service
(EJB, Java Bean)

WSDL

SOAP
Mapping XML

To Java

Deployment
Descriptors

Deployment
Descriptors

The SAAJ APIs provide a standard means of handling SOAP messages. These APIs can
be used to create, inspect, and alter SOAP messages. They can even be used to send
and receive SOAP messages. Their primary use is for creating JAX-RPC handlers, as

these APIs easily allow a developer to access information in the SOAP message.

WASv6_J2EE14_WebServices.ppt Page 28 of 39

IBM Software Group

28

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

SOAPMessage

SAAJ API

�Contains methods for
creating and sending
SOAP messages

�Unlike JAX-RPC and

J2EE Web Service clients
which create the SOAP

message automatically

�SOAPPart can only
contain XML content

�Does not contain

attachment

SOAPPart

SOAPEnvelope

SOAPHeader (Optional)

SOAPBody

XML

SOAPFault (Optional)

Header

The SAAJ API, defines the format of SOAP messages. If you look at the image on the
right of the screen you will see the format of the SOAP message. This contains a single
SOAP part that will contain the SOAP portion of the message. The Soap part contains the

SOAP envelope, which is what you will usually see referenced when describing Web
Service communications. Within the SOAP envelope there is an optional header generic
information. The SOAP body part is mandatory and contains the actual XML

representation of the service invocation.

SAAJ also contains methods for creating and sending attachments with your soap

message. Attachments con contain data in any format, and are not limited to XML, as is
the SOAP message. These can be used to send data that is inappropriate to send in an

XML format, such as Images. The attachments are added within the SOAP message, but

outside of the SOAP part, and they must contain a MIME header that describes the format
of the data.

WASv6_J2EE14_WebServices.ppt Page 29 of 39

IBM Software Group

29

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

SOAPMessage

SOAP Messages with Attachments

�A SOAPMessage may
contain one or more
AttachmentPart elements
for attachments

�An attachment can contain
data in any format

�XML, Binary, etc…

�The MIME header is used
to define the data the
attachment contains

SOAPPart

SOAPEnvelope

SOAPHeader (Optional)

SOAPBody

AttachmentPart

Content
(XML or non-XML)

MIME Header

The SAAJ API provides the AttachmentPart class to represent the attachment part of a
SOAP message. A SOAPMessage object automatically has a SOAPPart object and its
required sub elements, but because AttachmentPart objects are optional, you must create

and add them yourself.

If a SOAPMessage object has one or more attachments, each AttachmentPart object must

have a MIME header to indicate the type of data it contains. It may also have additional
MIME headers to identify it or to give its location, which are optional but can be useful
when there are multiple attachments. When a SOAPMessage object has one or more

AttachmentPart objects, its SOAPPart object might or might not contain message content.

WASv6_J2EE14_WebServices.ppt Page 30 of 39

IBM Software Group

30

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

SAAJ 1.2

� SAAJ 1.2 contains new APIs and binds the SAAJ APIs to Document Object
Model (DOM) APIs

�The new APIs focus on ease of use and Java Doc support.

�The SOAPPart of a SOAP message is now also a level 2 DOM document.

�An object model is a mechanism for accessing a document

org.w3c.dom.Document org.w3c.dom.Node org.w3c.dom.Text

SOAPPart javax.xml.soap.Node javax.xml.soap.Text

SOAPElement

In J2EE 1.4 the SAAJ specification has matured to 1.2. The primary changes in SAAJ 1.2
are that the SAAJ APIs are now bound to the Document Object Model or DOM APIs. The
DOM APIs provide a standard mechanism for accessing XML documents. As part of the

changes the SOAP part of a SOAP message will now be considered a level 2 DOM
document. These changes give more options to developers when parsing the XML of the
SOAP messages.

WASv6_J2EE14_WebServices.ppt Page 31 of 39

IBM Software Group

31

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

WSWS--SecuritySecurity

Section

This section provides a brief overview of WS-Security.

WASv6_J2EE14_WebServices.ppt Page 32 of 39

IBM Software Group

32

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Overview

� WS-Security is a message level standard defining how to secure SOAP
messages using a number of methods

� XML Digital Signature:
� Digitally sign the SOAP XML document, providing integrity, authenticity, and signer authentication – JSR

105 to address this programmatically

� XML Encryption:
� Process for encrypting data and representing the result in XML providing confidentiality – JSR 106 to

address this programmatically

� XML Canonicalization:
� provides normalized XML document that can be digitally signed and verified

� Credential propagation through security tokens

� Independent of the protocol used to send the message

� WS-Security is currently supported at different levels by different vendors

Web Services Security is a recently finalized standard that has been included with J2EE
1.4. In earlier versions of WebSphere Application Server, IBM provided support for WS-
Security based on an early version of the specification, so some changes will occur as the

product continues to conform to the new specification.

Web Services security is a message-level standard, providing security at the point of

communication by including security information in the SOAP message sent by the client.

The client, based on information stored within the Web services binding and extension
files inserts WS-Security information in the SOAP message. This security information can

be in the form of security tokens, digital signatures, or encryption. The server, based on
the information within the server-side Web services binding and extension files, will check

for the security constraints in the incoming SOAP message header. The security

information remains separate from the protocol used, meaning that any protocol which

provides support for passing of SOAP messages can also add WS-Security information
into that message.

WASv6_J2EE14_WebServices.ppt Page 33 of 39

IBM Software Group

33

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

WS-Security Implementation in WebSphere

� WS-Security is implemented as message level system
handler and is registered to the Web Service runtime by the
Application Server

�Henceforth, the handlers will be referred to as the Security
Handlers

� At the Client: Security handler is invoked to generate the
required security headers in the SOAP message before the
message is sent out to the wire

� At the Provider (Server): Security handler is called to
enforce the declared security constraint in the deployment
descriptor prior to dispatching the request to the Web
Service Provider (EJB or Java Beans) implementation

Within the Application Server, WS-Security is implemented as a message level system
handler, which is handled by the runtime. These handlers are usually referred to as the
Security handlers, and are used to prepare security on a SOAP message on the client

side. The handler will ensure that the appropriate security information has been added to
the message before it is sent to the target provider. When the message is received by the
service provider, another security handler will be the first to operate on the message. It

will process the message, removing encryption and validating the security tokens
contained within the message. After the security has been verified, normal operation for
the Web service will continue. If the Web service makes a response to the client, security
handlers will apply security as appropriate to the response.

WASv6_J2EE14_WebServices.ppt Page 34 of 39

IBM Software Group

34

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Security HandlerSecurity Handler

WS-Security High Level Architecture

Response

Request

Configuration

Deployment descriptor
and service bindings

AppServer

EJB

or

Java

Bean

Client

SOAP request +

[WS-Security headers

| transport headers]
Response

Request

Configuration

Deployment descriptor
and service bindings

�Security Token generation

�Digital Signature generation

�Encrypt message

�Decrypt message

�Digital Signature validation

�SecurityToken validation and setup security
context

�Decrypt message

�Digital Signature
validation

�Digital Signature

generation

�Encrypt message

This slide provides a high level look at the security architecture as it applies to Web
Services. On the left side of the slide is a client application, making a request to the Web
Service provider on the right side of the slide. The security handler associated with the

request from the client application creates and applies security tokens, digital signatures,
and encrypts the message. The information for security operations to perform on the
message are stored within deployment descriptors and binding files associated with the

client. These files are accessed by the security handler during its operations. The SOAP
message with the security information is then sent to the service provider. Within the
security provider’s Application Server, the security handler decrypts the message and
validates security tokens and digital signatures. The handler will again check information

stored in the deployment descriptors and binding files to determine the appropriate

security to expect on the message. If the appropriate security is not found within the

message, the request will be denied. If a response is made, the security handlers will add
and check security to the response message in the same way.

WASv6_J2EE14_WebServices.ppt Page 35 of 39

IBM Software Group

35

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Summary

� Introduced J2EE 1.4 Web Services

�Discussed

�Creating of Web Services and deploying it as a service

provider

�JSR 101/109 details

�Will discuss Web Services support in WebSphere,
WS-Security and Web Services Tools in other
presentations

In summary, this presentation explained the details on the J2EE specifications outlining
the usage of Web Services. Various references and materials are provided on the
following slides to help further explain these topics.

WASv6_J2EE14_WebServices.ppt Page 36 of 39

IBM Software Group

36

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Resources: JSR 101, 109

� JSR 101 (JAX-RPC)
�http://java.sun.com/xml/jaxrpc/index.html

� JSR 109
�http://jcp.org/jsr/detail/109.jsp

�http://www-106.ibm.com/developerworks/webservices/library/ws-

jsr109/index.pdf

� Introduction to Web Services
�http://java.sun.com/webservices/docs/ea2/tutorial/doc/IntroWS.html

�WS-I Basic Profile
�http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

WASv6_J2EE14_WebServices.ppt Page 37 of 39

IBM Software Group

37

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Resources: Standards and Organizations

� http://www.w3.org/TR/SOAP/

� http://www.w3.org/TR/wsdl

� http://www.WS-I.org

� http://xml.apache.org/soap

WASv6_J2EE14_WebServices.ppt Page 38 of 39

IBM Software Group

38

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Resources

� http://www.ibm.com/software/ad/studioappdev

� http://www.ibm.com/software/webservices

� http://www.ibm.com/developerworks/webservices

� http://www.alphaworks.ibm.com/webservices

� http://www.redbooks.ibm.com

�SG246891 - WebSphere V5 Web Services Handbook

� http://www.eclipse.org

WASv6_J2EE14_WebServices.ppt Page 39 of 39

39

IBM Software Group

J2EE 1.4 Web Services Overview © 2004 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

