
WASv6_JAXR.ppt Page 1 of 24

®

IBM Software Group

© 2004 IBM Corporation

Updated January 25, 2005

IBM® WebSphere® Application Server V6

Java™ API for XML Registries (JAXR)

WASv6_JAXR.ppt Page 2 of 24

IBM Software Group

2

Java API for XML Registries © 2004 IBM Corporation

Goals

�Explain the purpose of JAXR

�Explore the JAXR specification

�Compare other Universal Description, Discovery
and Integration (UDDI) APIs with JAXR

�Describe how to use the JAXR API

WASv6_JAXR.ppt Page 3 of 24

IBM Software Group

3

Java API for XML Registries © 2004 IBM Corporation

Agenda

� Discuss Registries

� Explain the concept of JAXR

� JAXR in more detail

�JAXR capability profiles

�JAXR architecture

�The JAXR information model

� UDDI4J and the IBM Java Client for UDDI v3

� Using the JAXR API

�Connecting to a Registry

�Managing Registry objects

�Searching a Registry

�JAXR security

WASv6_JAXR.ppt Page 4 of 24

IBM Software Group

4

Java API for XML Registries © 2004 IBM Corporation

What is a Registry?What is a Registry?

WASv6_JAXR.ppt Page 5 of 24

IBM Software Group

5

Java API for XML Registries © 2004 IBM Corporation

What is a Registry?

�An infrastructure that enables the publishing and
discovery of Web Services

�Facilitates business-to-business (B2B) interactions

Registry

Business B

Business APublish

Discover

B2B

WASv6_JAXR.ppt Page 6 of 24

IBM Software Group

6

Java API for XML Registries © 2004 IBM Corporation

What is JAXR?What is JAXR?

WASv6_JAXR.ppt Page 7 of 24

IBM Software Group

7

Java API for XML Registries © 2004 IBM Corporation

What is JAXR?

�A standard API for accessing Registries within a
Java platform

�Provides a union of best features of dominant
registry specs (particularly UDDI and ebXML)

�Current version (v1.0), supports UDDI v2 only

�Does not map precisely to UDDI (For a precise mapping,
UDDI provides the IBM UDDI version 3 Client for Java

and UDDI4J)

�Developed by the JSR093 expert group and it is
part of the J2EE 1.4 specification

The stated goals of the specification are to:

1. Define a general purpose Java API for accessing business registries that allows any
JAXR client to access and

interoperate with any business registry that is accessible via a JAXR provider.

2. Define a pluggable provider architecture that enables support for diverse registry
specifications and standards.

3. Support a union of the best features of dominant registry specifications rather than a
common intersection of features. JAXR is not a least common denominator API.

4. Ensure support for dominant registry specifications such as ebXML and UDDI, while
maintaining sufficient generality to support other types of registries, current or future.
547

5. Ensure synergy with other Java specifications related to XML.

Important Note: the current JAXR specification is written against UDDI v2.

Currently there are a variety of specifications for XML registries. These include:

The ebXML Registry and Repository standard, which is sponsored by the Organization for
the Advancement of Structured Information Standards (OASIS) and the United Nations
Centre for the Facilitation of Procedures and Practices in Administration, Commerce
and Transport (U.N./CEFACT)

The Universal Description, Discovery, and Integration (UDDI) project, which is being
developed by a vendor consortium

eCo Framework, developed as part of the eCo Framework Project. This was chartered by
CommerceNet in August, 1998, with Commerce One as the primary corporate sponsor,

WASv6_JAXR.ppt Page 8 of 24

IBM Software Group

8

Java API for XML Registries © 2004 IBM Corporation

What is JAXR? (cont.)

�The goal of JAXR is to enable interoperability
between diverse clients and Registries

Java Applet
J2EE

Components
Java

Application

JAXR
API

UDDI ebXML Other

Future

Although the goal of JAXR is to provide a generic API for any XML based registry, the 1.0
specification maps primarily to ebXML and UDDI. The ability to provide JAXR APIs for
“Other” registries should improve as the specification develops

WASv6_JAXR.ppt Page 9 of 24

IBM Software Group

9

Java API for XML Registries © 2004 IBM Corporation

JAXR in More DetailJAXR in More Detail

WASv6_JAXR.ppt Page 10 of 24

IBM Software Group

10

Java API for XML Registries © 2004 IBM Corporation

JAXR Capability Profiles

� JAXR API methods are categorized by a Capability
Profile

�Two Capability Profiles currently defined

�Level 0

�Level 1

� JAXR provider must declare the capability level for
its implementation

� Level 1 support includes Level 0 support

� IBM’s JAXR implementation is Level 0 compliant

�Level 0 support is for UDDI Registries

The JAXR API categorizes its API methods by a small number of capability profiles.
Currently only two capability profiles are defined (level 0 and level1). The capability level is
defined in the API documentation for each method in a class or interface in the JAXR API.

There is no assignment of capability level to interfaces and classes in the JAXR API.
Capability assignment is done at the method level only.

A JAXR provider must declare the capability level for its implementation of the JAXR API.
A JAXR client may discover a JAXR provider’s capability level by invoking methods on an
interface named CapabilityProfile as defined by the JAXR API. If a JAXR provider declares
support for a specific capability level then it implicitly declares support for lower capability
levels. For example, a JAXR provider that declares support for the level 1 profile implicitly
declares support for level 0 profile.

A JAXR provider must implement the functionality described by the JAXR API for each
method that is assigned a capability level that is less than or equal to the capability level
declared by the JAXR provider.

A JAXR provider must implement all methods that are assigned a capability level that is
greater than the capability level declared by the JAXR provider, to throw an
UnsupportedCapabilityException. A JAXR provider must never implement any other
behavior for methods assigned a greater than the capability level declared by the JAXR
provider. The reason for this restriction is that it is necessary to ensure portable behavior
for JAXR clients for any JAXR provider within a specific capability level.

Support for the level 0 profile is required to be supported by all JAXR providers. The
methods assigned to this profile provide the most basic registry capabilities. JAXR
providers for UDDI must be level 0 compliant.

Support for the level 1 profile is optional for JAXR providers. The methods assigned to this
profile provide more advanced registry capabilities that are needed by more demanding
JAXR clients. JAXR providers for ebXML must be level 1 compliant.

Examples of Level 1 capability:

The JAXR RegistryPackage (used to group logically related RegistryObjects
together) is Level 1 only

WASv6_JAXR.ppt Page 11 of 24

IBM Software Group

11

Java API for XML Registries © 2004 IBM Corporation

JAXR Architecture

JAXR Client

UDDI ebXML Other

JAXR Pluggable Provider
UDDI

Provider
ebXML

Provider
Other

Provider

Repository Repository Repository

Connection Object – represents client session

JAXR Provider

Registry Provider

ebXML/SOAPUDDI/SOAP Future

The JAXR client may be any stand-alone Java application or an enterprise component based on J2EE
technology. The JAXR client uses the JAXR API to access a registry via a JAXR provider.

A Connection object represents a client session with a registry provider using a JAXR provider. It maintains
state information for a specific connection. From the Connection, the client obtains the RegistryService
interface. This in turn provides access to Capability specific interfaces, for example, Life cycle management,
query management (more details later).

The JAXR Pluggable provider implements features of the JAXR API that are independent of any specific
registry type. The Pluggable provider provides a single abstraction for multiple registry-specific JAXR
providers. It allows the client to avoid being exposed to the fact that there are multiple registry-specific JAXR
providers performing the actual registry access. For example, the JAXR Pluggable provider is provided with
a pluggable ConnectionFactory implementation that can create JAXR Connections using the appropriate
registry-specific JAXR provider.

Registry providers are implementations of various registry specifications, like UDDI, ebXML

The specification makes a distinction between a Registry and a Repository. A Repository is a holder of
submitted content while a Registry is a

catalog that describes the submitted content in the Repository.

Bear in mind also the note under Slide 8 regarding the capability of the specification to enable JAXR
providers for “Other” Registries

WASv6_JAXR.ppt Page 12 of 24

IBM Software Group

12

Java API for XML Registries © 2004 IBM Corporation

RegistryObject

Organization
�

businessEntity

Concept
�

tModel (service type)

RegistryEntry

Service
�

businessService

ServiceBinding
�

bindingTemplate

Classification
�

keyedReference

ClassificationScheme
�

tModel (namespace)

The JAXR Information ModelThe JAXR Information Model

Object name in JAXR
�

Corresponding name in UDDI

Key:

This is a subset of the complete JAXR information model showing some example objects
by way of illustration – these are all Java interfaces in the API model.

It also shows examples of how JAXR objects map to UDDI objects.

The Concept object maps to the type of tModel that represents a “fingerprint” of a Service.

The ClassificationScheme object maps to the type of tModel that represents a

classification namespace, like NAICS.

The mapping of JAXR to UDDI is discussed in detail in Appendix D of the JAXR

specification (URL on summary slide).

Some interfaces require additional metadata such as version information. These have the
RegistryEntry interface as their base interface

WASv6_JAXR.ppt Page 13 of 24

IBM Software Group

13

Java API for XML Registries © 2004 IBM Corporation

IBM UDDI Version 3 Client for Java and UDDI4JIBM UDDI Version 3 Client for Java and UDDI4J

WASv6_JAXR.ppt Page 14 of 24

IBM Software Group

14

Java API for XML Registries © 2004 IBM Corporation

JAXR compared to UDDI Java APIs

� There are some limitations in the mapping of the JAXR Information Model to

UDDI

� UDDI4J maps precisely to UDDI v2 and therefore provides a more complete

API capability

� IBM UDDI version 3 Client for Java maps precisely to UDDI v3

�JAXR is for UDDI v2 only, no mapping to UDDI v3 APIs

� JAXR aims to provide portability across different XML Registries

UDDI v2
Registry

UDDI v3
Registry

JAXR UDDI4J

IBM
UDDI

version 3
Client for

Java

with limitations v2 support only

JAXR is actually closely aligned with ebXML rather than UDDI

Mapping Limitation examples:

• There are two different JAXR objects which map to the tModel object.

• The JAXR PostalAddress object has a lot more structure than the
corresponding UDDI address object, so many of its attributes can’t be mapped.

• The JAXR RegistryPackage (used to group logically related RegistryObjects
together) has no equivalent in UDDI.

Attempts by a client to work with objects/attributes that can’t be mapped will result in an
UnsupportedCapabilityException being thrown.

Portability – as long as the code only uses JAXR elements common to all Registries being
accessed.

Furthermore, JAXR only supports access to a v2 UDDI Registry. WebSphere 6.0 will

provide the IBM UDDI version 3 Client for Java (IJC4U3) which is the v3 equivalent of

v2.

WASv6_JAXR.ppt Page 15 of 24

IBM Software Group

15

Java API for XML Registries © 2004 IBM Corporation

Using the JAXR APIUsing the JAXR API

WASv6_JAXR.ppt Page 16 of 24

IBM Software Group

16

Java API for XML Registries © 2004 IBM Corporation

Connecting to a Registry

1. Obtain a ConnectionFactory object

2. Set properties on the ConnectionFactory
(example: the Registry URL)

3. Obtain a Connection from the ConnectionFactory
(createConnection method)

WASv6_JAXR.ppt Page 17 of 24

IBM Software Group

17

Java API for XML Registries © 2004 IBM Corporation

Connecting to a Registry: Example

//specify the ConnectionFactory implementation classname

System.setProperty("javax.xml.registry.ConnectionFactoryClass",
"com.ibm.xml.registry.uddi.ConnectionFactoryImpl");

//instantiate a ConnectionFactory object

ConnectionFactory connectionFactory = ConnectionFactory.newInstance();

//instantiate a Properties object and add the Inquiry and Publish URLs

Properties props = new Properties();

props.setProperty("javax.xml.registry.queryManagerURL",
"http://localhost:9080/uddisoap/inquiryapi");

props.setProperty("javax.xml.registry.lifeCycleManagerURL",
"https://localhost:9080/uddisoap/publishapi");

//add the properties to the ConnectionFactory

factory.setProperties(props);

//create the Connection

Connection connection = factory.createConnection();

WASv6_JAXR.ppt Page 18 of 24

IBM Software Group

18

Java API for XML Registries © 2004 IBM Corporation

Managing Registry Objects

�BusinessLifeCycleManager Interface:

�Defines API similar to UDDI Publisher’s API

�Provides methods to create, update and delete registry
objects

�For example:
� saveServices(java.util.Collection services)

� deleteOrganizations(java.util.Collection organizationKeys)

�Methods return a BulkResponse instance containing:

� Collection of response objects like keys of successfully saved registry

objects

� Collection of RegistryExceptions, if any

WASv6_JAXR.ppt Page 19 of 24

IBM Software Group

19

Java API for XML Registries © 2004 IBM Corporation

Managing Registry Objects: Example

//get a RegistryService object

RegistryService rs = connection.getRegistryService();

//get a BusinessLifeCycleManager object

BusinessLifeCycleManager blcm = rs.getBusinessLifeCycleManager();

//create an Organization called “MyBank”

Organization org = blcm.createOrganization(“MyBank");

//instantiate a Collection and add the Organization to it

Collection orgs = new ArrayList();

orgs.add(org);

//save the Organization in the registry

BulkResponse response = blcm.saveOrganizations(orgs);

//get the exceptions Collection

Collection exceptions = response.getException();

//check to see if any exceptions have been returned

When a client creates an organization, it does not include a key; the registry returns the
new key when it accepts the newly created organization. The key(s) of the newly created
object(s) is(are) returned in the BulkResponse and can be obtained by calling the

getCollection() method on the BulkResponse object and then iterating through the
Collection.

WASv6_JAXR.ppt Page 20 of 24

IBM Software Group

20

Java API for XML Registries © 2004 IBM Corporation

Searching a Registry

�BusinessQueryManager interface:

�Defines API similar to UDDI Inquiry API

�Provides find methods

�Arguments specify the search criteria:

Example: findQualifiers, namePatterns

�BulkResponse is returned

There is also a DeclarativeQueryManager interface, which provides a more flexible search
API allowing SQL queries. However, this is at Level 1 and therefore not supported in the
WebSphere JAXR provider.

WASv6_JAXR.ppt Page 21 of 24

IBM Software Group

21

Java API for XML Registries © 2004 IBM Corporation

Searching a Registry: Example

//get a BusinessQueryManager object

BusinessQueryManager bqm = rs.getBusinessQueryManager();

//instantiate a Collection and add findQualifier(s)

Collection findQualifiers = new ArrayList();

findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);

//instantiate a Collection and add namePattern(s)

Collection namePatterns = new ArrayList();

namePatterns.add("%Bank%");

//initiate the search

BulkResponse response = bqm.findOrganizations(findQualifiers,

namePatterns, null, null, null, null);

//get the results Collection

Collection orgs = response.getCollection();

To search for organizations by name, you normally use a combination of find qualifiers
(which affect sorting and pattern matching) and name patterns (which specify the strings
to be searched). The findOrganizations method takes a collection of findQualifier objects

as its first argument and a collection of namePattern objects as its second argument.

A client can use percent signs (%), as in the above example, to specify that the query

string can occur anywhere within the organization name.

WASv6_JAXR.ppt Page 22 of 24

IBM Software Group

22

Java API for XML Registries © 2004 IBM Corporation

JAXR Security

�Connection.setCredentials method

�Allows the client to set the security credentials for the
user that is currently associated with the client:

PasswordAuthentication pa = new PasswordAuthentication(“MyUser",

new char[] { ‘M', ‘y', 'p', 'a', 's', 's', 'w', 'o', 'r', 'd' });

Set credentials = new HashSet();

credentials.add(pa);

connection.setCredentials(credentials);

The authentication mechanisms that the IBM JAXR implementation supports are
authToken ("UDDI_GET_AUTHTOKEN") and HTTP basic authentication ("HTTP_BASIC")

Username/password combination is specified using an instance of the
java.net.PasswordAuthentication class.

WASv6_JAXR.ppt Page 23 of 24

IBM Software Group

23

Java API for XML Registries © 2004 IBM Corporation

Summary

� JAXR provides a standard Java API for accessing
XML Registries

� JAXR provides Registry object management and
search capabilities

� IBM UDDI version 3 Client for Java or UDDI4J
provide a more complete mapping to UDDI objects

�The JAXR specification is available via the JAXR
home page at

http://java.sun.com/xml/jaxr/index.jsp

WASv6_JAXR.ppt Page 24 of 24

24

IBM Software Group

Java API for XML Registries © 2004 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

