IBM Software Group

IBM® WebSphere® Application Server V6

Web Services in WebSphere Application
Server: New Features

© 2005 IBM Corporation
Updated March 2, 2005

This presentation will go into detail on a number of enhancements for Web Services that
are offered in WebSphere Application Server V6.

WASv6_WebService_NewFeatures.ppt Page 1 of 46

| IBM Software Group

Goals

= Provide Details of
» New Web Services functions in V6

= Prerequisite:

» Understanding of WebSphere Application Server
implementation of Web Services

S
Web Services: New Features © 2005 IBM Corporation

This presentation will focus on the new enhancements to Web Services offered by
WebSphere Application Server V6. Other presentations cover the basics of Web Services,
and how J2EE Web Services work within WebSphere Application Server. Most of these
new features focus on the inner workings of the Web Services Engine and Performance
enhancements specific to Web Services running on WebSphere Application Server. They
are not intended to be used in all Web Services deployments.

WASv6_WebService_NewFeatures.ppt Page 2 of 46

| IBM Software Group

Agenda

= Custom Bindings
= Support for generic SOAP elements
= Client Caching

= Multi-Protocol support

K
Web Services: New Features © 2005 IBM Corporation

This presentation will begin by talking about the ability to define custom data bindings to
be used during serialization and deserialization. Then it will explain a new capability to
turn off the deserialization process for certain SOAP messages. This will cause the
objects to be passed to the target service as generic SOAP elements. Next it will discuss
a performance enhancement made to DynaCache that focuses on Web Services. This
enhancement was actually first offered in V5.1.1 but is included here because many
people were not aware of the change. Finally the last new feature that will be shown is the
added support for the RMI-IIOP protocol that has been added to the JAX-RPC APIs. This
enhancement allows for a better performing method to call EJB Web Services.

WASv6_WebService_NewFeatures.ppt Page 3 of 46

‘ IBM Software Group

Section

Support for Custom Bindings

© 2005 IBM Corporation

Now for an explanation of the added support for Custom Bindings.

WASv6_WebService_NewFeatures.ppt Page 4 of 46

| IBM Software Group

Support for Custom Bindings

= Java™ API for XML - Remote Procedure Call (JAX-RPC)
does not support all schema types

» Unsupported types can be mapped to literal XML elements
represented as SOAP elements

» This works well for data-centric applications, but not very well for
type-centric applications

» Users may want to map schemas to custom or legacy Java types

= A new CustomBinder interface is provided to be
implemented by the binding provider

» A CustomBinder deals with a particular pair of XML schema type and
Java type

» 2 primary methods: Serialize and Deserialize

Web Services: New Features © 2005 IBM Corporation

JAX-RPC specifies binding XML types in SOAP messages to Java types used by J2EE
web services. The data bindings specified are limited by the specification, and may cause
problems when trying to support legacy or custom data types. Using another new feature
in V6, it is possible to not bind un-specified types and instead to return them as generic
SOAP elements. More will be explained about that in the next section. Custom Bindings
are primarily aimed at data-centric applications, that are comfortable handling XML. For
type-centric applications it would be better to be able to define custom bindings, allowing
applications to extend the JAX-RPC specification when needed. By extending the JAX-
RPC specification this feature will limit the interoperability of a Web Service.

In order to define a custom data binding, developers would use the new CustomBinder
interface. A CustomBinder deals with mapping a specific XML type to a Java type, by
defining a serialize and deserialize method.

WASv6_WebService_NewFeatures.ppt Page 5 of 46

| IBM Software Group

Support for Custom Bindings: Example

= JAX-RPC binds XML data to specific Java types

» Certain designs may want to override this automatic choice

= Custom Bindings allow the developer to choose the
mapping rules

= The SOAP message must use the Literal style
» Document/Literal or RPC/Literal

Custom Custom

Binding Java to XML Request [VIEICRETE Binding
JAX-RPC Mapping Mapping Provid

. rovider
Client MSOAP

XML to Java 68589es Java to XML
: Maopi
Mapping Response S

~ Web Services: New Features © 2005 IBM Corporation

Here is an example of how a custom data binding would be implemented within a Web
Service application. For a Web Service to use custom bindings the SOAP message must
be sent using the Literal format, this feature does not support the encoded format. This is
not much of a limitation as Document/Literal is becoming the most accepted format for
sending SOAP messages, as it is supported by the Web Services Interoperability
standards and provides the best performance.

In this example a Custom Binding has been created using the CustomBinder interface.
This custom binding will be needed within both the client and provider application. This
limits the ability to implement this feature in a solution where clients are generated by the
customers. There has to be some process for getting the custom serializer to the client
application, and that client must be running within WebSphere to support this feature. The
custom binding will be used by the serialization engine to map the Java type to XML and
vice versa, using the custom serialize and deserialize methods it contains.

WASv6_WebService_NewFeatures.ppt Page 6 of 46

| IBM Software Group

Custom Bindings

= Without custom data binding
» Imported as a SOAPElement
» import javax.xml.soap.SOAPElement;
public interface TransactionCoordinator extends java.rmi.Remote {

public SOAPElement register(SOAPElement param) throws
java.rmi.RemoteExcepdQn;

Imported as
SOAPElement

= With custom data binding
» Imported as the Java type
» import com.ibm.wsspi.wsaddressing.EndpointReference;
public interface TransactionCoordinator extends java.rmi.Remote {
public EndpointReferenge register(EndpointReference param)

throws java.rmi.RemoteBxgeption;

Imported as
Endpoint
Reference

~ Web Services: New Features © 2005 IBM Corporation

Here are two examples: one using a custom data binding and the other without a custom
data binding. In the top example without a custom data binding the type is imported as a
SOAP element. Whereas in the bottom example using a custom binding for an endpoint
reference, the parameter is imported as the proper Java type. Just as it would be if the
data type was supported by the JAX-RPC specification.

WASv6_WebService_NewFeatures.ppt Page 7 of 46

| IBM Software Group

CustomBinder Interface

interface CustomBinder {
/[the gname this binder targets
QName getQName():
/I QName scope for this binder
String getQNameScope();

// the java type name for unmarshalling
String getJavaName();

/I serialize the Java object to SOAPElement
SOAPEXxception;
// deserialize the SOAPElement to Java object

SOAPEXxception;

~ Web Services: New Features

CustomBinder provides the
methods for converting XML
into Java

The XML will be wrapped in a
SOAPElement

javax.xml.soap.SOAPElement serialize(Object,

CustomBindingContext) throws

Object deserialize(javax.xml.soap.SOAPElement, CustomBindingContext) throws

© 2005 IBM Corporation

On this slide is an example of the CustomBinder interface used for defining the mapping
between an XML and Java type. The Custom Binding specifies a Qname and Qname
scope for the binding, the Qname scope specifies whether the binding deals with either a
named or anonymous XML type. Otherwise 2 methods for mapping the Java data type to
XML and mapping the XML back to Java need to be written. The XML must be wrapped
in a SOAP element within these methods. This is how the parameter will be received from

the SOAP message.

WASv6_WebService_NewFeatures.ppt

Page 8 of 46

| IBM Software Group

QNameScope

= The CustomBinder interface contains an attribute
gNameScope

» Indicates whether the binder deals with the named type or the
anonymous type in the XML

» The value for gnameScope is ‘element’ for the anonymous types
» Or a value of ‘complexType’ or ‘simpleType’ for named types

= To combine a number of custom bindings to support a
custom application a Custom Binding Provider can be used

» Normally created for a specific custom schema file which requires the
custom data binding

» Declared in the /META-INF/services/CustomBindingProvider. XML file
» Provided as part of the jar file

Web Services: New Features © 2005 IBM Corporation

The Qname scope, specifies whether the custom binding refers to the named or
anonymous XML type. The QName scope will be element for anonymous types or it will
be complexType or simpleType for named XML types.

Custom Data bindings are defined to the Application Server in the Custom Binding
Provider file. This Custom Binding Provider can also be used to group a number of
bindings together. Groupings would be defined in the /META-
INF/services/customBindingProvider.xml file and packaged as part of the jar file for the
application.

WASv6_WebService_NewFeatures.ppt Page 9 of 46

| IBM Software Group

CustomBindingProvider.xml
= Stores information about custom bindings

<provider xmins:wsa1="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<mapping>
<xmlQName>wsa1:EndpointReferenceType</xmIQName>
<javaName>com.ibm.wsspi.wsaddressing.EndpointReference</javaName>
<gnameScope>complexType</qnameScope>
<binder>com.ibm.ws.wsaddressing.binder.EndpointReferenceBinder</binder>
</mapping>

<mapping>
<xmlQName>wsa1:ServiceNameType</xmIQName>
<javaName>com.ibm.wsspi.wsaddressing.ServiceName</javaName>
<gnameScope>complexType</qnameScope>
<binder>com.ibm.ws.wsaddressing.binder.ServiceNameBinder</binder>
</mapping>

o

~ Web Services: New Features © 2005 IBM Corporation

This slide shows an example of the CustomBindingProvider.xml file. This file contains all
the information needed by the runtime to access the Custom Bindings that have been
written. In this example there are 2 custom bindings, one for an end point reference and
one for a service name. This file specifies the XML types, and Java types associated with
each binder as well as which binder for the application to use when it encounters one of
these types.

WASv6_WebService_NewFeatures.ppt Page 10 of 46

| IBM Software Group

Binding Levels

= Depending on where the Custom Binding Provider
is located it has different levels of visibility

» Custom Binding Provider is packaged in a jar file

= Packaged with an application module
» Visible only to the module

-Binder
= Configured as part of a shared library

» Visible to any module sharing the library I
Module

= Placed in the system directory

» Visible to the entire runtime

I @M ~

L
Web Services: New Features © 2005 IBM Corporation

Depending on where the jar file, containing the custom binding provider, is placed it will
have different levels of visibility within the Application Server. This leaves 3 choices for
developers. The jar file can be packaged as part of an application module, making it only
visible to that application. It could be added to a shared library, so that any module that
can access the library has access. Or it can also be placed within the WebSphere
Application Server system directory making it visible to the entire WebSphere Application
Server runtime. Developers can choose the appropriate level of access for their
environment.

WASv6_WebService_NewFeatures.ppt Page 11 of 46

| IBM Software Group

Provider Discovery

= Provider Discovery

» Locate providers at o o
/IMETA-INF/services/CustomBinderProvider.xml within supplied jar files

» Runtime:

= System level provider: jar files have to be visible to WebSphere Application Server
runtime classloader such as $WAS/lib or $WAS/classes

= Application level provider: jar files have to be visible to application classloader such
as /WEB-INF/lib

» Command line options
= -classpath besides the system level discovery

= WSDL2Java
» Discover all custom binding providers

» For each xml type encountered, query the providers to obtain the
Java type
» Burn the custom data binding information into the stub

© 2005 IBM Corporation

~ Web Services: New Features

Based on where the Custom Binding Provider file is located the Runtime is going to use
the file to find the custom bindings the Application Server will need to use. For an
application level provider, the file needs to be visible to the application class loader. For a
system level provider, the file needs to be visible to the runtime class loader. WSDL2Java
will query the providers to obtain the appropriate Java type and burn this into the stub
defining the Web Service.

WASv6_WebService_NewFeatures.ppt Page 12 of 46

| IBM Software Group

Section

Support for Generic SOAP Elements

© 2005 IBM Corporation

Next a feature offering support for disabling the normal deserialization process will be
explained.

WASv6_WebService_NewFeatures.ppt Page 13 of 46

| IBM Software Group

Support for Generic SOAP Elements

= In normal JAX-RPC flows, SOAP elements are deserialized
into Java data types

= Support For Custom Bindings allows for the specified JAX-
RPC bindings to be extended or changed

= Certain designs may prefer to eliminate the binding
completely

» Support for generic SOAP elements gives the developer
the ability to disable the normal deserialization process

» Improves performance of Services that do not require
their XML bound to Java types

] S
Web Services: New Features
The process by which XML types in SOAP messages are mapped to Java types within the
Java runtime has been explained a number of times by now. JAX-RPC has a list of data
types it supports and the new Custom Binder feature allows developers to extend that list.
But there can also be times, when developers want to completely avoid the deserialization
process completely. Certain services may prefer to work directly with the XML of the
SOAP message. For these types of services any type of deserialization requires them to
pay performance costs they would rather avoid. This enhancement allows developers to
tell the run time not to map the XML to Java types but instead to pass the target Web
Service the raw XML types in the SOAP message.

14
© 2005 IBM Corporation

WASv6_WebService_NewFeatures.ppt Page 14 of 46

| IBM Software Group

Generic Elements: Example

= WSDL2Java contains a new option —noDataBinding
» Disables normal deserialization, instead all objects will be returned
bound to the SAAJ SOAPElement API

= The SAAJ API will provide a new method for accessing the
xml string that represents the SOAPElement tree

» Public final String toXMLString(...)

SoapElement
XML Data
<a>
<a> Deserialization Hello
Hello > <c>World</c>
<c>World</c>

15
© 2005 IBM Corporation

To support this change, WSDL2Java has a new option, noDataBinding. By using this
option, the parameters for the Web Service will not be deserialized into Java types, but will
instead be passed to the target service as a SOAP Element. The SAAJ API will provide a
new method that allows developers to retrieve the XML string from the SOAP element.
The code in the Web Service will have to be written to handle the XML types as
appropriate. This feature allows developers to take control of this process, rather than
leave it to the Java runtime.

Web Services: New Features

WASv6_WebService_NewFeatures.ppt Page 15 of 46

| IBM Software Group

Generic Elements: Binding Example

= Normal binding:
» public Bean echo(Bean bean);

= Generic binding:
» public SOAPElement echo(SOAPElement bean);
» the SEI exposes the SAAJ interface

» Use the toXMLString() method to retrieve the xml
content from the SOAP element

K
Web Services: New Features © 2005 IBM Corporation

Here are two examples of Web Services, the first one using a regular binding, and the
second one using the new noDataBinding option. The method exposed in both of these
examples is a simple Echo function that returns the parameter it receives. In the first
example, the parameter has been bound to type Bean, meaning that the Web Service will
be passed a parameter of the appropriate Java type. The second example uses the
Object type of SOAP element. This is a part of the SAAJ interface, and using the new
method toXMLString that it contains, this will allow access to the contents of the
SOAPElement from within the Web Service method.

WASv6_WebService_NewFeatures.ppt Page 16 of 46

| IBM Software Group

Changes in Web Services Engine

= There are a number of changes to the Web Services Engine to
support this change

» Under normal conditions a full SAAJ tree is constructed when an
SAAJ element is deserialized

» The engine will detect usage of the SAAJ implementation and in
these cases the XML string will be attached to the SOAPElement

» IBM’'s SOAPElement implementation provides mechanisms for
storing data in alternate, optimal, structures such as xml string
= Reasons for using the generic element

» The service may be a conduit to another service, in this case the
message is only being forwarded

» The message may need to be manipulated by a different data model
(SDO), using the generic element makes it easier to convert

» A handler may need to manipulate the message in a more generic
manner

17

Web Services: New Features © 2005 IBM Corporation

Normally the Web Services Engine will create a full SAAJ tree representing the XML of the
SOAP message, when an element is deserialized. When noDataBinding is used this
process is deferred, and instead only the XML string will be attached to a SOAP element.
This is part of the IBM implementation of SOAP element, and allows for greater
performance when dealing with the XML in the SOAP message.

Obviously there are only certain types of Web Services that would ever use this feature.
The primary types of services that would want to defer deserialization are either going to
forward the XML on to another service as part of a business process. Also, certain web
services may prefer to deal with XML instead of Java types. Using this feature in either of
these circumstances will make it easier to create these types of Web Services and help
make them perform better. However, it should be mentioned that this change is aimed at
a limited section of the development community.

WASv6_WebService_NewFeatures.ppt Page 17 of 46

‘ IBM Software Group

Section

Web Services Client Caching

© 2005 IBM Corporation

This is a explanation of a performance enhancement for Web Services provided by
DynaCache.

WASv6_WebService_NewFeatures.ppt Page 18 of 46

| IBM Software Group

DynaCache Overview

= WebSphere V5.0 can cache
» Servlets
» JSPs
» Java objects
» Commands
» Server-side web services

= Can cache portions of pages and responses

= V6.0 adds the capability to cache Web Service
responses within the client’s Application Server

19
© 2005 IBM Corporation

Web Services: New Features

DynaCache is a dynamic caching solution integrated with WebSphere Application Server
to help improve performance of certain applications. Since WebSphere Application Server
version 5.0 Dynacache has had the ability to cache full responses, or portions of a
response to calls made to Servlets, JSPs, Plain Old Java Objects, and server side Web
Services. Version 6 adds the capability to cache responses to Web Services within the
DynaCache on the clients Application Server. This will further increase performance of
Web Services clients that run within a WebSphere Application Server.

WASv6_WebService_NewFeatures.ppt Page 19 of 46

| IBM Software Group

Client Caching

= Increases the performance of Web Services clients
by caching responses from remote Web Services

» Once a response is cached, subsequent calls to the
same Web Service with the same set of request
parameters could be responded from cache

= Provided as a JAX-RPC handler
» Based on the policy specified in the cachespec.xml file

= Choice of methods to invalidate cached values
» Rule Based, Time Based, APIs

Web Services: New Features © 2005 IBM Corporation

DynaCache increases performance by responding to requests from a value stored in
cache rather than invoking the actual service or code being called. Once a response has
been added to the cache, any matching calls made to the service can be responded to
from the cached value, so long as the value in the cache is considered valid.

There are a number of ways to invalidate a value once it has been placed into the cache.
Rules can be set within Dynacache, though this is the least likely to be used with web
services. Time based invalidation, will invalidate an entry after a certain amount of time
has passed. It is also possible to invalidate an entry in cache through code.

The new client caching capabilities are provided via a JAX-RPC handler. This handler
uses the caching policy specified in the CacheSpec.xml file. This file contains all
dynacache caching policies and is not specific to just the new Client Caching feature.

WASv6_WebService_NewFeatures.ppt Page 20 of 46

| IBM Software Group

Architecture: Big Picture

JAX-RPC
Runtime

SOAP

© 2005 IBM Corporation

Here is an example of how the JAX-RPC client cache handler fits within the Application
Server’s Java Virtual Machine or JVM.

Within the JVM the JAX-RPC runtime has a hook to the caching service. When a client
request comes into the RPC runtime, it is intercepted by the cache handler that checks
the cache based on rules found in the cache configuration XML file. If it doesn’t find the
information in the Cache, then it will either call the Web Service within the same
WebSphere server, or forward the call on to the target Web Service located elsewhere.
This means the Web Service can be local or remote to this server. The result would be
placed in the cache before being returned to the client.

WASv6_WebService_NewFeatures.ppt Page 21 of 46

| IBM Software Group

JAX-RPC Cache Handler: Details

= Request

= |s it Cacheable?
» No: do not cache
» Yes: check cache

handleRequest()

DHE

E_RESPONSE

= Does it exist in
Cache?
» No: populate cache

» Yes: set response
Populate Cache

= Response
handleResponse()

© 2005 IBM Corporation

This slide is a more detailed look at the choices being performed within the Cache
Handler.

Web services client caching is provided as a JAX-RPC cache handler. In the
handleRequest() method, cache configuration manager is searched for a cache policy
based on the target endpoint address specified in the request. Request is not cacheable if
a matching cache policy is not found. If a matching policy is found, all the cache id rules in
that policy are executed one by one until a valid rule is identified. Result of the first valid
cache rule will be the cache key for lookup. If this lookup ends in a cache miss, a property
is added to the handler chain’s message context to cache the response in
handleResponse() method. If this lookup ends in a cache hit, the value from the cache is
set as the response and the rest of the request handle chain is blocked. If a SOAP fault is
returned, the response is not cached. Else it will be cached in handleResponse() method
using the cache key specified in the message context.

WASv6_WebService_NewFeatures.ppt Page 22 of 46

| IBM Software Group

Scenarios

= Enterprise applications hosted on content
provider’s network exchanging SOAP messages

= Reverse proxy acting as a gateway by invoking
Web Services

» Proxy can respond without invoking target services

= Split-Tier setup

» Both client and server running WebSphere Application
Server

S
Web Services: New Features © 2005 IBM Corporation

The next few slides are going to look at a number of scenarios where using a client side
cache will help improve performance. These will help to illustrate the enhancements that a
client side cache makes possible.

WASv6_WebService_NewFeatures.ppt Page 23 of 46

‘ IBM Software Group

External Content Provider Scenario without
Cache

SOAP

© 2005 IBM Corporation

In the first example there is an existing Web Services scenario, with multiple Web
Services clients running within a WebSphere Application Server. They access a Web
Services provider by sending SOAP messages over the internet. In this example each
separate call must be made to the target provider, depending on the number of repetitive
calls this can get expensive from a performance perspective.

WASv6_WebService_NewFeatures.ppt Page 24 of 46

| IBM Software Group

External Content Provider Scenario with Cache

Client Cache
Handler

SOAP

© 2005 IBM Corporation

Now take that previous example and add a client side cache. Again this is simply a JAX-
RPC handler that will interact with the DynaCache within the Client’s Application Server.
This allows each of the Web Services clients to cache their results most likely for some
specific period of time. Repetitive calls made within that time frame will be responded
from cache, preventing unnecessary calls over the internet. When those cache values
become stale, the next call made to the Web Service will be made as normal, and that
value would repopulate the cache value. This can greatly lower the number of Web
Services calls being made in certain scenarios.

WASv6_WebService_NewFeatures.ppt Page 25 of 46

| IBM Software Group

Split Tier Scenario

Server Side
Cache

SOAP

Dynamic
Cache

© 2005 IBM Corporation

The next example deals with a split tier environment, in which a reverse proxy server is
sending client requests to a service provider within the same intranet. The Reverse proxy
server would most likely be a Web Services Gateway or similar application in this
scenario.

The Web Services provider in this case is already using DynaCache’s capabilities. From a
provider perspective, these features have existed since V5. This will increase
performance on the provider side, by responding to some requests via cache, instead of
running the Web Services provider code. However this scenario can be improved.

WASv6_WebService_NewFeatures.ppt Page 26 of 46

| IBM Software Group

Split Tier Scenario with Cache

Client Cache Server Side
Handler Cache

A
v

SOAP

Dynamic
Cache

© 2005 IBM Corporation

Take that previous example and add a client side cache to the reverse proxy server and
now the proxy server can respond to requests without having to call the actual services
provider. Also the Web Services provider can still use dynacache to further enhance
performance. Since the client side cache is represented as a JAX-RPC handler it can be
installed into the Web Services Gateway, improving performance by minimizing calls to the
actual service providers.

WASv6_WebService_NewFeatures.ppt Page 27 of 46

| IBM Software Group

Enabling JAX-RPC Cache

= JAX-RPC caching is enabled if Dynamic cache
Service is enabled

= Configure caching policy in cachespec.xml
» New type of configuration entry “JAXRPCClient

» Supporting new types “part”, “operation”

= The cachespec.xml file is found inside the WEB-
INF directory of a Web module

X) Sl
Web Services: New Features

© 2005 IBM Corporation

Turning on the Client Caching capability is as simple as enabling DynaCache within the
administration console. In the case of a Services Gateway, DynaCache would have to be
enabled on the Application Server the gateway application is installed.

The caching policy for the handler is specified in the cache spec XML file. There is a new
type of entry that can be placed in this policy file called JAXRPCClient to support these
changes. This file can be global, if it is located in the Application Server properties
directory. Though, the recommended method is to keep the xml file with the deployment
module of your application.

WASv6_WebService_NewFeatures.ppt Page 28 of 46

IBM Software Group

Caching Example

© 2005 IBM Corporation

Now for an example of implementing client side caching.

WASv6_WebService_NewFeatures.ppt Page 29 of 46

| IBM Software Group

cachespec.xml and cache Ids

= Cache IDs are used to reference entries in the
cache

= Cache id from SOAP header entries
» Best performance

= Cache id from SOAP envelope
» Hash code

= Cache id from SOAP Body
» Operation and Part
» Allows highest level of granularity

"L U

K
Web Services: New Features © 2005 IBM Corporation

When data is cached in WebSphere a cache ID is created to help store and retrieve the
information in the cache. WebSphere has a number of choices when creating a cache id,
depending on the level of granularity needed. The ID can be created from the SOAP
header. This is the best performing method for creating the ID, but it is also the least
granular. Otherwise the ID can be generated from the SOAP envelope or from entries in
the SOAP body. These allow more control over which data is stored in the cache, but they
can also be more difficult to set up.

WASv6_WebService_NewFeatures.ppt Page 30 of 46

| IBM Software Group

Sample WSDL

<definitions targetNamespace= >
<message name="getQuoteRequest">
<part name="symbol" type="xsd:string"/>
</message>
<binding name="SoapBinding" type="tns:GetQuote">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getQuote">
<soap:operation soapAction=""/>
<input name="getQuoteRequest">

<soap:body namespace="http://TradeSample.com/" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
</operation>
</binding>
<service name="GetQuoteService">
<port binding="tns:SoapBinding" name="SoapPort">
<soap:address location="http://TradeSample.com:9080/service/getquote"/>
</port>
</service>
</definitions>

2

Ry

~ Web Services: New Features

© 2005 IBM Corporation

Here you see portions of an example WSDL for a stock quote service. It contains a
method for getQuote, which requires a parameter ‘symbol’ which would be the stock name
like IBM. The various bolded areas are information you would need for cache ID’s

WASv6_WebService_NewFeatures.ppt

Page 31 of 46

| IBM Software Group

Sample SOAP Request

POST /wsgwsoap1/soaprpcrouther HTTP/1.1

<?xml version="1.0" encoding="UTF-8"7?>
<soapenv:Envelope ...>
<soapenv:Header>
<getQuote soapenv:actor="com.ibm.websphere.cache">
IBM
</getQuote>
</soapenv:Header>
<soapenv:Body ... >
<getQuote xmins="urn:ibmwsgw#GetQuoteSample">
<symbol xsi:type="xsd:string">IBM</symbol>
</getQuote>
</soapenv:Body>
</soapenv:Envelope>

b
Web Services: New Features

© 2005 IBM Corporation

Here is a small portion of a sample WSDL that will be used for the example. The WSDL is
exposing a method called getQuote. This method takes a parameter of symbol,
representing the stock symbol for a company. The other portion shown here is the actual

address location for this service.

WASv6_WebService_NewFeatures.ppt

Page 32 of 46

| IBM Software Group

Cache ID from SOAP Header

<cache>
<cache-entry>
<class>JAXRPCClient</class>
<name>http://TradeSample.com:9080/service/getquote</name>

<cache-id>
<component id="getQuote" type="SOAPHeaderEntry"/>

</cache-id>
</cache-entry>

</cache>

= Cache ID is
http://TradeSample.com:9080/service/getWQuote:getQuote=IBM

3
?g,
Web Services: New Features © 2005 IBM Corporation

In this example of a cache entry using the SOAP header to create the cache id, the cache
entry class is JAXRPCClient. The name is the tradesample service getQuote binding.
The cache id generated from this is shown on the bottom of the slide. So from this cache
entry example a response to the getQuote method for IBM would be placed in the cache.

WASv6_WebService_NewFeatures.ppt Page 33 of 46

| IBM Software Group

Cache ID from SOAP Envelope

<cache>
<cache-entry>
<class>JAXRPCClient</class>
<name>http://TradeSample.com:9080/service/getquote</name>
<cache-id>
<component id="hash" type="SOAPEnvelope"/>
<timeout>60</timeout>
</cache-id>
</cache-entry>

</cache>

= Cache ID is
http://TradeSample.com:9080/service/getquote:Hash=<xxxHashSoapEnvelope>

.
S

~ Web Services: New Features © 2005 IBM Corporation

This is an example of getting the information from the SOAP envelope. This performs
slightly slower then the SOAP header example, because it requires some parsing of the
SOAP message to retrieve this information. The name is the SOAP port coming in, and a
HASH on the SOAP envelope is specified. The id value that is created contains the hash
value for the SOAP envelope.

WASv6_WebService_NewFeatures.ppt Page 34 of 46

| IBM Software Group

Cache ID from SOAP Body

<cache>
<cache-entry>
<class>JAXRPCClient</class>
<name>http://TradeSample.com:9080/service/getquote</name>
<cache-id>
<component id="" type="operation">
<value>http://TradeSample.com/:getQuote</value>
</component>
<component id="symbol" type="part"/>
</cache-id>
</cache-entry>

</cache>
= Cache ID is

http://TradeSample.com:9080/service/getquote:operation=http://TradeSample.com/:getQuote/symbol=IBM

.
o

~ Web Services: New Features © 2005 IBM Corporation

This is an example showing how to create a cache id from the SOAP body. This method
allows the greatest control in selecting what is cached, but also requires the largest
performance penalty as the entire XML message must be parsed by the cache handler to
retrieve this information. This would allow the ability to cache certain portions of an XML
message that will be common across multiple service requests.

WASv6_WebService_NewFeatures.ppt Page 35 of 46

| IBM Software Group

Section

Multi-Protocol Support

© 2005 IBM Corporation

Finally are a number of slides on the new multi-protocol enhancements made to JAX-RPC
within WebSphere Application Server V6.0. This enhancement extends the JAX-RPC
support to allow for use of RMI-IIOP calls to EJB based Web Services.

WASv6_WebService_NewFeatures.ppt Page 36 of 46

| IBM Software Group

Multi Protocol Support

= Extends JAX-RPC support for invoking remote
stateless session EJBs with RMI-IIOP

» Better performing method for calling EJB services

= This allows managed clients (defined by JSR 109)
to access Web Services through a number of
protocols

» No changes to JAX-RPC client are needed

) - SRl
Web Services: New Features

37
© 2005 IBM Corporation

With this change IBM is extending the JAX-RPC support for invoking EJB Web Services.
JAX-RPC already supports SOAP over HTTP, and IBM extended that with support for
JMS. With these changes Stateless Session EJBs can also be invoked using RMI-IIOP.
This is the preferred method for EJB web services due to the performance gains.

These changes do not require any changes to an existing JAX-RPC managed client. This
simply adds more APlIs that can used to invoke web services. A JAX-RPC client that is
running within WebSphere now has the option to directly call EJB’s using these new
methods, these changes should be mostly transparent to the developers.

WASv6_WebService_NewFeatures.ppt Page 37 of 46

| IBM Software Group

Supported Flows for Java Bean and EJB

Existing SOAP/HTTP Invocation

} } Application Server RMI-IIOP
| |
| | Web Container EJB Container
| Web RISOAP|| e [|
| | service g ! SOAP ! ! Application Server
| | client |5 [T router | |
} i serviet /. | | Web Container EJB Container
|
I | |
[\) SOAP | |
router I |
servlet | |
\-{ UNDI || e

| o]

New Direct EJB Invocation

Works for Stateless Session Beans

.
o

~ Web Services: New Features © 2005 IBM Corporation

This slide shows how a Stateless Session EJB is invoked within the WebSphere
Application Server. On the upper left there is the old way of accessing EJBs. This
required the client to send a SOAP message to a router servlet contained within the web
container. The router servlet would then invoke the EJB service in the EJB container.
The added overhead of the router servlet decreased performance for EJB web services
using JAX-RPC. This led to a lot of developers using WSIF to invoke EJB services.

With these changes, the router servlet will be bypassed, and instead stateless session
EJBs can be called in a more natural way from JAX-RPC clients. The client will
communicate directly with the EJB service using RMI-IIOP.

WASv6_WebService_NewFeatures.ppt Page 38 of 46

| IBM Software Group

Example WSDL with EJB Bindings

<wsdl:definitions

xmins:ejb="http://www.ibm.com/ns/2003/06/wsdl/mp/ejb"
xmins:generic="http://www.ibm.com/ns/2003/06/wsdl/mp" >

<wsdl:binding name="AddressBookEjbBinding" type="impl:AddressBook">
<ejb:binding/>
<wsdl:operation name="getAddressFromName">
<ejb:operation methodName="getAddressFromName"/>
<wsdl:input name="getAddressFromNameRequest">
</wsdl:input>
<wsdl:output name="getAddressFromNameResponse">
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="AddressBookService">
<wsd|:port binding="impl:AddressBookEjbBinding" name="AddressBookEjb">
<generic:address location="wsejb:/ejb.class.name?jndiName=ejb.name"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

a

~ Web Services: New Features

© 2005 IBM Corporation

These changes require some small changes in the WSDL document that will be generated
for EJB services. This example shows that the binding is defined as an EJB binding. The
methodName attribute is the EJB home interface method name to be invoked for the
abstract operation name which encloses it in the WSDL. Lastly the address for the EJB
service includes a JNDI name that will be used to look up the EJB within the target

application server.

WASv6_WebService_NewFeatures.ppt

Page 39 of 46

| IBM Software Group

Other Changes
= WSDL2Java

» No new command-line options
» Changed to recognize non-SOAP ports and bindings
» Locator and Stub classes will support non-SOAP ports
» New Information class contains service information
previously contained in the stub
= Java2WSDL
» Changed to create non-SOAP bindings in the WSDL

» Command-line now supports EJB bindings
= java2WSDL —bindingTypes http,ejb —implClass my.pkg.MyEJBClass
my.pkg.MySEI

) - SRl
Web Services: New Features

© 2005 IBM Corporation

Some changes are also needed in the supporting tools associated with web services.
WSDL2Java has been changed to recognize non SOAP bindings. The stub classes that
WSDL2Java generates will also be changed to support non SOAP ports. There has also
been the inclusion of a new Information class to contain information on the service
previously contained within the stub.

Java2WSDL was changed to create the new WSDL document that was shown on the last
slide. When running Java2WSDL from the command line there is a new EJB option for
creating bindings.

WASv6_WebService_NewFeatures.ppt Page 40 of 46

‘ IBM Software Group

Section

Summary and Reference

© 2005 IBM Corporation

Now for the summary and reference sections of the presentation.

WASv6_WebService_NewFeatures.ppt Page 41 of 46

| IBM Software Group

Summary

= Discussed New Web Services fun