
WASv6_WebServices_Basics.ppt Page 1 of 25

®

IBM Software Group

© 2004 IBM Corporation

Updated January 25, 2005

IBM® WebSphere® Application Server V6.0

Web Services Basics

This presentation will focus on the general principals and technologies that are used in
Web Services.

WASv6_WebServices_Basics.ppt Page 2 of 25

IBM Software Group

2

Web Services Basics © 2004 IBM Corporation

Goals

�Provide a description of Web Services base
technologies

�Web Services Description Language (WSDL)

�Simple Object Access Protocol (SOAP)

�Universal Description, Discovery and Integration (UDDI)

This presentation will cover the core concepts that make up Web Services. It will begin by
discussing the basic technologies, like XML, SOAP and WSDL that Web Services are
based on.

WASv6_WebServices_Basics.ppt Page 3 of 25

IBM Software Group

3

Web Services Basics © 2004 IBM Corporation

Agenda

�Overview

�Web Services – Core technologies overview

�Web Services Description Language (WSDL)

�Simple Object Access Protocol (SOAP)

�Universal Description, Discovery and Integration (UDDI)

This presentations begins by discussing the concepts behind Web Services. Next it
covers the core technologies that Web Services utilize; WSDL, SOAP and UDDI.

WASv6_WebServices_Basics.ppt Page 4 of 25

IBM Software Group

4

Web Services Basics © 2004 IBM Corporation

Overview:Overview:

Web ServicesWeb Services

Section

Now for a brief overview of Web Services.

WASv6_WebServices_Basics.ppt Page 5 of 25

IBM Software Group

5

Web Services Basics © 2004 IBM Corporation

Web Services: Overview

� Web Services are modular applications that can be

described, and invoked over the internet

�Standards based, interoperable, self-contained

�Ability to publish and search for specific services

� Web Services can be new applications or just wrapped

around existing legacy systems to make them internet-
enabled

� Services can rely on other services to achieve the goals and

participate in a Business Process

� Web Services are called using XML-based SOAP requests

�Allows connecting heterogeneous systems

Web Services offer the ability to invoke methods and applications over the internet, using
a standardized approach to describe and call methods using XML. XML is platform
independent and allows Web Services to communicate in a heterogeneous environment.
Web Services are described using the Web Services Description Language or WSDL,
which describes the various components of a Web Service in an XML format that can be
used to build a client to access that service. Web Services can be used to wrap existing
applications as a way to include them into a Service Oriented Architecture or process flow.
Web Services can be combined to create a Business Process.

WASv6_WebServices_Basics.ppt Page 6 of 25

IBM Software Group

6

Web Services Basics © 2004 IBM Corporation

Web Services: Example

� In a typical Web Services scenario, a business application sends a
request to a service at a given URL using the SOAP protocol over HTTP

�The service receives the request, processes it, and returns a response

� A common example of a Web Service is that of a store purchasing
service, in which the requestor queries a registry for available suppliers,
picks a supplier based on some criteria, then sends a request to that
supplier for some goods, the supplier would then send a response for the
purchase

Service
Registry

My Store

Good
Supplier

Better
Supplier

Best
Supplier

SOAP Request

In a basic example of a Web Service, an application sends a SOAP request to a target
service using HTTP. The target service will receive and process the message, possibly
returning a result to the requestor. A common example of a Web Service focuses on their

use in a Business to Business transaction. A store that needs to make a purchase can
query a registry of available Web Services. The registry holds information on Web
Services, how to call them, and quality of service information. Based on that information

the store application can make a decision on which Web Service to use, and then send a
request to that target Web Service. The Web Service would consume the request,
possibly returning a result to the store application.

WASv6_WebServices_Basics.ppt Page 7 of 25

IBM Software Group

7

Web Services Basics © 2004 IBM Corporation

1. Publish2. Find

3. Bind (invoke)

SOAP

WSDL

Service

Requestor

Service

Provider

Service

Registry

- UDDI -

Web Services Architecture

Note: Service Registry is Optional. The Requestor may get WSDL from other places than the Registry

Service Registry

A Searchable repository of service
descriptions

Service Provider

Provides applications as services

Publishes their services to registry

Service Requestor

A client that requires a service

Searches the registry for available services

This is the big picture explanation of Web Services. There are three roles in the triangle:
the Service Provider, the Service Registry, and the Service Requestor. Web Services are
about creating interfaces. They achieve this by creating a standard description of the

services being provided by the Service Provider in a WSDL document. In particular, the
WSDL document tells the client exactly where the service is being hosted, what are the
operations that can be called, what are the input parameters, and what to expect back as

a response from the service provider.

The service provider can exist on the internet or an intranet and it may choose to publish

its services on a registry, usually either a UDDI registry or an ebXML registry. This can be
a public registry that anybody can access, or a private registry, accessible from within the

Intranet.

Ultimately – whether through a UDDI registry or via other means, the service requester is
interested in getting hold of the WSDL document that describes the service to be

accessed. Using the WSDL document, the requester can generate a client that consumes
the service.

The communications among these components use XML which ensures interoperability
and support.

WASv6_WebServices_Basics.ppt Page 8 of 25

IBM Software Group

8

Web Services Basics © 2004 IBM Corporation

Web Services: Java™ Example

� Client invokes Service Stub

� Service Stub maps Java Objects to XML and prepares the SOAP message

� Service Stub sends the SOAP message

� SOAP Message is received by the target Web Service

� SOAP Contents are mapped from XML to objects

� Web Service operation is executed

Java Client
Application

Service Stub SOAP
Runtime

Web Service
Runtime

Web Service
(EJB, Java Bean)

WSDL

SOAP
Mapping XML

To Java

Mapping Java
to XML

Here is a more technical example of how a Web Service is called. A Java client
application invokes a Web Service proxy described in a WSDL document. The WSDL
document is used to generate a Service Stub, which is a J2EE artifact that is used to call

the target Web Service. The service stub will prepare the SOAP message to be sent and
map the Java types from the client application to XML types that can be sent in the SOAP
message. The service stub will then send the SOAP message to the target service using

HTTP as a transport protocol. The SOAP message will be received by the target Web
Service, where the Web Service runtime will consume the message. This will map the
XML in the SOAP message back to Java types, and call the method being described by
the Web Service.

WASv6_WebServices_Basics.ppt Page 9 of 25

IBM Software Group

9

Web Services Basics © 2004 IBM Corporation

WSDL WSDL
(Web Services Description Language)(Web Services Description Language)

Section

Now for an explanation of the Web Services Description Language or WSDL.

WASv6_WebServices_Basics.ppt Page 10 of 25

IBM Software Group

10

Web Services Basics © 2004 IBM Corporation

What is WSDL?

�Provides an industry standard way to describe Web
Services

�To describe services for calling, must be readable
and compatible with different technologies

�WSDL is XML based and extensible

The Web Services Description Language or WSDL is a crucial part of a Service-Oriented
Architecture, as it provides a standard way to describe services. Using WSDL, you can
describe the interface for a Web Service once and then provide different bindings and

services for different clients based upon their platform or language. This provides support
for communication in mixed environments. This implementation also has a consistent
client programming model. This leads to another very important concept of Service-

Oriented Architectures. The adoption of an SOA has greater client requirements than
server requirements. It is up to the client to be able to map their objects into the generic
XML format which is described in the Service interface and to invoke the service based
upon the binding and service information provided.

WASv6_WebServices_Basics.ppt Page 11 of 25

IBM Software Group

11

Web Services Basics © 2004 IBM Corporation

Java Class

Methods

Input Params

Return Value

WSDL Document

�WSDL document
contains 3 sections

�PortType describes

the generic service

�Binding describes the
binding of the service

to a protocol

�Service describes the
binding of
communication

information for calling
service

WSDL Document

PortType

Operations

Input Message

Message
Part (Type)

Output Message

Binding

Operations

Input

Output

Service

Ports

Binding

Address/Location

Java Implementation

A WSDL file is made up of 3 sections; a port type, bindings, and services. A WSDL port
type can be associated with multiple bindings. And each binding can in turn be associated
with multiple services. So a single port type can be associated with any number of
services. These sections contain various XML sections. Types provide a container for
data type definitions using some type system, such as an XML schema. Messages are an
abstract type definition of the data being communicated. A message can have one or
more typed parts. The port type is an abstract set of one or more operations supported by
one or more ports. Operation is an abstract definition of an action supported by the
service that defines the input and output message, as well as option fault messages. The
binding is a concrete protocol and data format specifications for a particular port type. The
binding information contains the protocol name, the invocation style, a service ID, and the
encoding for each operation. A service is represented as a collection of related ports.
Each port is a single endpoint, which is defined as an aggregation of a binding and a
network address.

WASv6_WebServices_Basics.ppt Page 12 of 25

IBM Software Group

12

Web Services Basics © 2004 IBM Corporation

WSDL: Interface Information

<wsdl:message name="getQuoteRequest">

<wsdl:part element="intf:getQuote"

name="parameters"/>

</wsdl:message>

<wsdl:message name="getQuoteResponse">

<wsdl:part element="intf:getQuoteResponse"

name="parameters"/>

</wsdl:message>

<wsdl:portType name="StockQuote">

<wsdl:operation name="getQuote">

<wsdl:input message="intf:getQuoteRequest"

name="getQuoteRequest"/>

<wsdl:output message="intf:getQuoteResponse"

name="getQuoteResponse"/>

</wsdl:operation>

</wsdl:portType>

PortType

Operations

Input Message

Message
Part (Type)

Output Message

Here is an example of the interface information for a Web Service. The example is a stock
quote service which accepts a message (getQuoteRequest) and returns a response
(getQuoteResponse). The getQuoteRequest message contains a single part, called

ticker, of type string. The getQuoteResponse message contains a single part, called
result, of type float. The types of the parts are based upon a generic XML format. The
messages and operations are also generic with no specifics about the implementation in

the interface information.

The client application or the Service Requestor would call the generic operation getQuote

on the portType StockQuote. As long as the client application can format the information

for the parts into the appropriate XML format, the messages can be completed in
preparation for calling the service.

While this example is very simple, it showcases all the major points of a service interface

information.

WASv6_WebServices_Basics.ppt Page 13 of 25

IBM Software Group

13

Web Services Basics © 2004 IBM Corporation

WSDL: Binding Information

<wsdl:binding name="StockQuoteSoapBinding" type="intf:StockQuote">

<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="getQuote">

<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getQuoteRequest">

<wsdlsoap:body use="literal"/>

</wsdl:input>

<wsdl:output name="getQuoteResponse">

<wsdlsoap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

Binding

Operations

Input

Output

At execution time, the generic calls made by the service requestor are converted to a
format which is understandable to the service implementation. The binding information in
the WSDL has the specifics on what method, function, or transaction a generic operation

will map to. In this example the getQuote operation maps to a SOAP operation of the
same name. If the implementation operation had a different name, it would be listed in the
SOAP Operation tag. For the input and output messages, the mapping of the parts to a

specific type uses standard SOAP encoding for converting from the generic type to the
SOAP implementation.

Notice that in this example the conversion is mapping XML objects to SOAP objects.

While this is expected for Web Services, when you talk about a larger Services concept,
the conversion can be performed from XML objects to any type of objects which can be

supported by the runtime environment.

WASv6_WebServices_Basics.ppt Page 14 of 25

IBM Software Group

14

Web Services Basics © 2004 IBM Corporation

WSDL: Service Information

<wsdl:service name="StockQuoteService">

<wsdl:port binding="intf:StockQuoteSoapBinding" name="StockQuote">

<wsdlsoap:address
location="http://localhost:9080/TestWeb/services/StockQuote"/>

</wsdl:port>

</wsdl:service>

Service

Ports

Binding

Address/Location

Besides the binding information, the service information is also used at execution time.
The service information is used when establishing a connection to the service. The service
information in the WSDL has the location for the service and contains the information on

what form of communication should be used when calling the service. In this example, for
a request to the StockQuoteService location and specifically the StockQuotePort service,
a SOAP connection will be established with the URL location listed.

WASv6_WebServices_Basics.ppt Page 15 of 25

IBM Software Group

15

Web Services Basics © 2004 IBM Corporation

SOAP SOAP
(Simple Object Access Protocol)(Simple Object Access Protocol)

Section

Now for a description of the Simple Object Access Protocol or SOAP.

WASv6_WebServices_Basics.ppt Page 16 of 25

IBM Software Group

16

Web Services Basics © 2004 IBM Corporation

Web Services Protocol: SOAP

�Network-neutral service access protocol to transfer
XML messages between Service Roles

�SOAP provides a simple method to communicate
between heterogeneous systems

Service
Requester

Service
Provider

<envelope>
<header>info</header>
<body>data</body>

</envelope>

HTTP

SOAP is the XML format that Web Services use to communicate. Soap is a network
neutral protocol that transfers XML messages between Service Requestors and Service
Providers. Because SOAP uses a platform independent means to send information
(XML), it allows a simple means to communicate in a heterogeneous environment. While
SOAP messages are most often sent using HTTP, SOAP is not limited to any protocol,
and can be sent using JMS and RMI-IIOP among other options. HTTP simply provides
the simplest and most expedient protocol for ending SOAP messages.

WASv6_WebServices_Basics.ppt Page 17 of 25

IBM Software Group

17

Web Services Basics © 2004 IBM Corporation

SOAP Message Format

�A SOAP message is an
envelope containing 0 or more
headers and exactly 1 body

�The envelope provides a container
for control information, the
addressee of the message, and
the message itself

�Headers contain optional control
information and provide
extensibility for the SOAP
message structure

�The body contains message
identification and its parameters

<envelope>

</envelope>

<header> (Optional)
</header>

<body>
</body>

A SOAP message is formatted within the concept of a SOAP envelope. The envelope
provides a container for control information, the addressee of the message, and the
message itself.

The SOAP envelope contains zero or more headers containing optional control information
about the message. The header references who has to do what with the message.

The SOAP envelope must also contain one body section. The body references what
actually has to be done when invoking the service. The Body is encoded as an immediate
child element of the SOAP envelope element.

WASv6_WebServices_Basics.ppt Page 18 of 25

IBM Software Group

18

Web Services Basics © 2004 IBM Corporation

SOAP Binding Styles

�Controls how the elements under the SOAP body
are constructed

�SOAP supports 2 different communication styles

�Document or Message Oriented

� Places an XML element into the SOAP body

� A lower level of abstraction requiring more programmatic work

�Remote Procedure Call (RPC)

� Adds extra elements to the XML to simulate a method call

� A synchronous invocation of an operation returning a result

SOAP messages have 2 binding styles, that specify how XML elements within the SOAP
body will be created. The two choices are Document or Remote Procedure Call (RPC).
Document creates the simplest XML, and thus offers the best performance. RPC adds

extra elements to simulate a method call.

The essence of the distinction lies in the above use of a type attribute versus an element

attribute. With document style, you're placing into the SOAP body an XML element that is
fully specified under the <wsdl:types> element. With RPC style, you're just specifying the
type so the SOAP engine, using RPC rules, can make it a parameter, or a return value,

and then place that parameter and any siblings inside an operation.

WASv6_WebServices_Basics.ppt Page 19 of 25

IBM Software Group

19

Web Services Basics © 2004 IBM Corporation

SOAP Encoding Styles

� Encodings define how data types are represented
in the XML

� There are a number of encoding styles

� SOAP encoding

� Translates values into data types specified in the SOAP data model

� Literal XML

� Converts XML DOM elements into elements in a SOAP message

� Encoding and Binding Styles are combined

� RPC/Literal, RPC/Encoded

� Document/Literal

SOAP encodings are used to tell the SOAP runtime how to translate from data structures
constructed in a specific programming language into SOAP XML, and back. This
translation process is referred to as serialization and deserialization, it can also be called

marshalling and unmarshalling. The most popular form of binding and encoding styles has
become Document Literal. This combination has proven to provide the best performance,
while creating the least complex SOAP message. This has led to this style being more

generally accepted across vendors and developers.

WASv6_WebServices_Basics.ppt Page 20 of 25

IBM Software Group

20

Web Services Basics © 2004 IBM Corporation

UDDI UDDI
Universal Universal DDescription, Discovery, and Integrationescription, Discovery, and Integration

Section

Next will be a discussion of the Universal Description, Discovery and Integration
technology or UDDI. This is the primary Service Registry technology used by WebSphere.

WASv6_WebServices_Basics.ppt Page 21 of 25

IBM Software Group

21

Web Services Basics © 2004 IBM Corporation

Web Services Registry: UDDI

� UDDI registries are used to advertise and find services and
businesses on the web

�Allows a client to choose from a list of available services based on

quality of service issues

� UDDI specification provides standardized formats for

programmatic business and service discovery

� It has both a client and server side API to programmatically

find, publish and modify registry information by Web
Services clients and providers

�The IBM UDDI version 3 Client for Java is the recommended way

to access the UDDI APIs

Service registries are used to find services provided on the internet. They allow service
requestors to query a single location for information about a number of services before
making a decision and calling a specific service. The UDDI specification provides a

standard method to both publish service information to a registry and to query a registry
for service information. The UDDI technology does this by providing two sets of APIs, one
for server side Web Service development, and the other for creating Web Service clients.

WASv6_WebServices_Basics.ppt Page 22 of 25

IBM Software Group

22

Web Services Basics © 2004 IBM Corporation

UDDI in Practice

A unique identifier is assigned
to each service and business registration

3.

UDDI Registry

Service Type
Registrations

Business
Registrations

SW companies,
standards bodies, and
programmers
populate the registry
with descriptions of
different types of
services

1.

Businesses populate
the registry with
descriptions of the
services they
support

2.

Marketplaces, search
engines, and business
apps query the registry
to discover services at
other companies

4.

Business obtain the locations
and implementation details of
other business' services from
their registry entries and use
this data to facilitate
e-business integration with
each other over the Web

5.

Here is an example of a UDDI registry at work. The first step is for businesses to populate
the registry with descriptions of the services that they provide and support. The registry
then assigns a unique identifier to each service description and business registration,

storing the identifiers in the registry. Through various methods, Web Service clients can
then query a registry for information on specific services. The information stored in the
registry can then be used to create a client to connect to the target Web Service. In many

ways the concept of a Service Registry is similar to the yellow pages in a telephone book.
Service providers can opt-in and provide information on their services so that it is easier
for consumers to find them.

WASv6_WebServices_Basics.ppt Page 23 of 25

IBM Software Group

23

Web Services Basics © 2004 IBM Corporation

Summary

�Discussed

�Web Services Core Technologies

�WSDL

�SOAP

�UDDI

This presentation introduced the basic concepts that make up Web Services. It explained
the underlying technologies that Web Services use to communicate, as well as details on
the uses for Web Services. Various references and materials are provided on the

following slides to help further explain these topics.

WASv6_WebServices_Basics.ppt Page 24 of 25

IBM Software Group

24

Web Services Basics © 2004 IBM Corporation

Resources

� http://www.ibm.com/software/ad/studioappdev

� http://www.ibm.com/software/webservices

� http://www.ibm.com/developerworks/webservices

� http://www.alphaworks.ibm.com/webservices

� http://www.redbooks.ibm.com

�SG246891 - WebSphere V5 Web Services Handbook

� http://www.eclipse.org

WASv6_WebServices_Basics.ppt Page 25 of 25

25

IBM Software Group

Web Services Basics © 2004 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

