
WASv61i_JVMConfig.ppt Page 1 of 16

This presentation discusses how to enable your application server to use the new IBM

J2SE™ Version 5 32-bit JVM when running WebSphere® Application Server V6.1 for

i5/OS release V5R4M0.

WASv61i_JVMConfig.ppt Page 2 of 16

The goal is to:

•give you an understanding of the two JVMs available on i5/OS starting in V5R4M0

•provide information on the new IBM 32-bit JVM that is available in V5R4M0

•and show you how to enable your WebSphere Application Server installation or just a

specific profile, to use the new IBM JVM.

WASv61i_JVMConfig.ppt Page 3 of 16

This section indicates which Java virtual machines are available to use with WebSphere

Application Server V6.1 on i5/OS.

WASv61i_JVMConfig.ppt Page 4 of 16

Beginning with i5/OS release V5R4M0, there are two JDK 5.0 JVMs available for you to use with WebSphere
Application Server V6.1 for i5/OS.

The “Classic” JVM is the i5/OS specific JVM which is integrated into i5/OS. The Classic JVM is a 64-bit,
Sun®-based JVM. This is the JDK used to install the WebSphere Application Server version 6.1 product and
the one the application server is configured to use out of the box.

The IBM Technology for Java version 5 JVM is the new IBM J2SE Version 5 32-bit JVM available for
V5R4M0 and higher. This is an IBM JVM that runs in the Portable Application Solutions Enablement (or
PASE) environment.

IBM Technology for Java has two key potentially beneficial characteristics for WebSphere Application Server
V6.1 users:

• Significant performance improvements for many applications - Most applications will see at least equivalent
performance when comparing WebSphere Application Server on the Classic VM to IBM Technology for
Java, with many applications seeing improvements of up to 20%.

•The second key characteristic is that 32-bit addressing allows for a potentially considerable reduction in
memory footprint - Object references require only 4 bytes of memory as opposed to the 8 bytes required in
the 64-bit Classic VM. For users running on small systems with relatively low memory demands this could
offer a substantially smaller memory footprint. Performance tests have shown approximately 40% smaller
Java Heap sizes when using IBM Technology for Java when compared to the Classic VM.

While 32-bit addressing can provide smaller memory footprints for some applications, it is imperative to
understand the other end of the spectrum. Applications requiring large Java heaps may not be able to fit in
the space available to a 32-bit implementation of Java. The 32-bit VM has a maximum heap size of around
2500 Megabytes due in part to WebSphere related memory demands like shared classes. The Classic VM
should be used for applications that require a heap larger than 2500 MB.

WASv61i_JVMConfig.ppt Page 5 of 16

This section discusses the new IBM J2SE version 5 32-bit JVM.

WASv61i_JVMConfig.ppt Page 6 of 16

Across IBM, Java technology is converging to a single, clean room Java Virtual Machine

implementation containing no Sun intellectual property. This new Virtual Machine

leverages the Java expertise of people all across the company and has been developed

entirely in-house. This new Java technology replaces operating system specific Virtual

Machine implementations and the virtual machine switch should be relatively transparent

to you. Pure Java applications, targeted at the proper JDK level, will function unchanged.

This new Virtual Machine is based on J2ME implementation, so it has been designed from

the ground up to be fast and have a small memory footprint.

In WebSphere Application Server Version 6.1, this new virtual machine is supported on all

platforms including i5/OS starting with release V5R4M0.

WASv61i_JVMConfig.ppt Page 7 of 16

The new Virtual Machine for Java is built on a new memory management framework for

allocating and freeing objects, which is the new garbage collector. This GC scheme

supports several collection policies, including two stop-the-world policies. Optthruput (the

default policy) is tuned to reduce overall processing time and should be used when some

pauses, which can range from milliseconds to seconds, are acceptable. The second stop-

the-world policy, optavgpause, is tuned to reduce the average pause time for a garbage

collection cycle, but generally consumes slightly more processing time overall.

The generational garbage collection policy is new in IBM Technology for Java V5. This

policy is based on the idea that objects that have been around for a long time are more

likely to continue to be needed, so it focuses on trying to collect newly created objects first.

This policy aims to both avoid long pause times and to minimize processing time. The

subpooling policy can be useful in intensely multi-threaded applications since it splits

garbage collection resources into different buckets to reduce resource contention. All of

these collection policies include a compactor and also support fragmented allocation.

These features help reduce the overall memory footprint of the Virtual Machine.

WASv61i_JVMConfig.ppt Page 8 of 16

The IBM Just-in-time compiler, or JIT, that is included with the IBM Technology for Java

Virtual Machine has several enhancements and different behaviors than previous versions

of the IBM JIT. It uses a separate thread for compiling JIT methods, so it is not going to

consume any of the resources of your other Java threads. The new JIT also provides five

different optimization levels, as opposed to the previous version which had a single

optimization strategy. JIT behavior can, of course, be configured using JIT options.

One of the most powerful new features of the JIT is something called full speed debug.

This allows you to run with the JIT enabled in debug mode. You can use this feature, in

combination with hot code replace, to replace class definitions on the fly. That way, you

can, for example, be stopped in debug mode, compile a new version of a Java class that

contains a fix that you would like to test out, swap in the new class file, and continue

running with that new class file definition in place. This can save you a great deal of time

because you can go through the whole process without having to restart your server, and

you have the added performance benefit of running with the JIT enabled.

WASv61i_JVMConfig.ppt Page 9 of 16

The shared class cache lives in an area of shared memory accessible to all Java Virtual

Machines running on a given system and contains a variety of static class data, for both

bootstrap classes and application classes. Any JVM can create a cache, connect to the

cache, or modify the cache. There is no defined direction of control or hierarchical

relationship. The cache dynamically keeps itself up-to-date, and the overhead to do so is

minimal, somewhere between 0-5%, depending on the application and the platform. The

behavior of the cache can be configured using JVM options.

The shared class cache is persistent beyond the lifetime of any JVM on the machine.

Even if you do not have any JVMs that are currently active and running, the shared class

cache still exists. This persistence leads to the first major benefit associated with the

shared class cache, which is improved startup time. With a populated cache, many of the

classes required for JVM startup are already resident in memory and do not need to be

loaded in from your hard drive or some other resource. This can result in dramatic startup

speed improvements. The shared class cache is persistent beyond the lifetime of any

JVM, but it is lost when your system shuts down or is IPL’d. So, the first time that you

start a JVM after your system has been IPL’d, you will experience some delay while the

class cache is being populated for the first time.

The class cache also provides significant memory savings at runtime because you no

longer need multiple copies of class data for several common classes across many JVMs.

They are all stored in a single location in the class cache. The more JVMs you have

connected to the cache, the more memory you save.

WASv61i_JVMConfig.ppt Page 10 of 16

This section provides information on how to enable WebSphere Application Server Version

6.1 for i5/OS to use the IBM 32-bit JVM.

WASv61i_JVMConfig.ppt Page 11 of 16

You can use the enablejvm Qshell script to change the JVM that your WebSphere

Application Server version 6.1 installation or profile is using.

The enablejvm tool has a a single required parameter, -jvm, which specifies the JVM to

use. For IBM Technology for Java 32-bit, specify –jvm std32. To switch back to the classic

i5/OS 64-bit JVM, specify –jvm classic.

To change the JVM for a single profile, use the –profile parameter to indicate which profile

you want to change. For example, to change the JVM used for profile myprofile32 to be

the new 32-bit JVM, enter enablejvm –jvm std32 –profile myprofile32 on the Qshell

command line.

If you do not specify the –profile parameter, all existing profiles for the WebSphere

Application Server installation are changed to use the specified JVM. When a new profile

is created, it is configured to use the new JVM.

After invoking enablejvm, be sure to restart any servers that were active for any profile that

was modified.

WASv61i_JVMConfig.ppt Page 12 of 16

There are special considerations when enabling which JVM to use for a deployment

manager or managed node which is part of a Network Deployment cell. When you enable

the JVM for a deployment manager cell, only the deployment manager server is affected.

None of the nodes managed by the deployment manager are changed.

To enable the JVM for a node belonging to a Network Deployment cell, invoke the

enablejvm Qshell script from the bin directory of the installation containing the managed

node. The deployment manager for the node must be running when you invoke the

command. The tool connects to the deployment manager to ensure that the master copy

of the nodes configuration files are updated correctly. If administrative security is enabled

for the deployment manager, you must specify the administrative user name and

password in the soap.client.props file, located in the properties directory of the profile, for

the profile you are enabling. Ensure that the com.ibm.SOAP.loginUserid and

com.ibm.SOAP.loginPassword properties are set correctly prior to enabling the JVM for a

profile that is part of a secure Network Deployment cell.

WASv61i_JVMConfig.ppt Page 13 of 16

The last portion of the presentation contains a summary and references.

WASv61i_JVMConfig.ppt Page 14 of 16

WebSphere Application Server Version 6.1 can run on top of either the i5/OS Classic 64-

bit JVM or the new IBM Technology for Java 32-bit JVM when running on i5/OS release

V5R4M0 or higher. This new 32-bit JVM uses 40% less memory than the 64-bit JVM. The

new Just-In-Time compiler offers new optimization levels and support for full speed debug.

The addition of a shared class cache enables faster start-up time and substantial memory

savings.

The enablejvm Qshell script allows you to switch JVMs quickly and easily.

WASv61i_JVMConfig.ppt Page 15 of 16

The enable JVM documentation contains details on how to use the enablejvm tool. The

Java 5.0 Diagnostics Guide contains additional information on the architecture of IBM

Technology for Java 32-bit JVM.

WASv61i_JVMConfig.ppt Page 16 of 16

