
WASv61_64bit_C_language_considerations_zOS.ppt

This presentation covers the C/C++ language considerations when using 64-bit support in

a WebSphere® Base Application Server V6.1 on z/OS.

Page 1 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

The agenda includes a discussion of data types and macros that were changed or added

to enable consistency between 31-bit and 64-bit modes.

Page 2 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

This section covers data type differences between 31-bit and 64-bit modes.

Page 3 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

Depending on which mode code is compiled for, some C/C++ native code datatype sizes

are changed. The table lists datatype, mode and defined size. These data types should

be understood and implemented accordingly.

Page 4 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

The ulong datatype size changes in C/C++ native code based on either 31-bit or 64-bit

mode. From a common code point of view, this change breaks the structure mapping

between C/C++ and PLX. To solve this problem, the ulong type is converted to an int

type, which is consistent between 31-bit and 64-bit mode. Other datatypes can be used

based on structure requirements.

Page 5 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

This section covers _LP64 and __ptr32.

Page 6 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

_LP64 is a compiler-provided directive that allows 64-bit code to be separated from

31-bit code in common source code through the use of #ifdef.

The __ptr32 attribute is used to make the pointer datatype 4 bytes under 64-bit

compile mode. This is useful in cases where storage is obtained under the 2

gigabyte address bar and the address must be stored in the 64-bit runtime for PLX

to manipulate later. This option is ignored in 31-bit compile mode.

Page 7 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

This section covers macros.

Page 8 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

Pointer arithmetic is required in native code to calculate length or size. When the

calculated value fits in a 4 byte data type, which is true in most cases, the data can be

stored as an int. However, 64-bit pointers are 8 bytes and normally the difference of two

pointers can not be stored into an int directly due to a compiler limitation. For this reason,

the above macros are added to ensure 31-bit / 64-bit code consistency. If the difference

between the two pointer values is too big to fit in a 4byte field or the value is negative an

exception is thrown.

Page 9 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

PLX code runs in 31-bit mode under a 64-bit WebSphere Application Server V6.1 runtime.

To pass data between 64-bit C/C++ storage to PLX, storage must be allocated in C/C++

below the 2 gigabyte address bar so PLX can manipulate them and this macro is provided

for this purpose.

Page 10 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

In general, the compiler supports the compare and swap commands (shown above)

for 4, 8, and 16 byte operands. Cds() and __cdsg() require that the operand be

double word and quad word aligned.

To keep native code common between 31-bit and 64-bit processing, a variety of

macros are provided to keep these operations consistent.

Page 11 of 13

WASv61_64bit_C_language_considerations_zOS.ppt

The macros are as follows:

1. COMPARE_AND_SWAP_PTR (old pointer, current pointer, new value) is

provided to comply with compile mode for 4 or 8-byte pointers.

2. COMPARE_AND_SWAP_PTR31(old pointer, current pointer, new value) is used

on 4 byte addresses regardless of bit mode

3. COMPARE_AND_SWAP_PTR_SEQ(old value, current value, new value) is used

where an 8-byte pointer and 8-byte sequence number is used

4. COMPARE_AND_SWAP_PTR_SEQ31(old value, current value, new value) is

used where a 4-byte pointer and a 4-byte sequence number is used regardless of

mode.

cs_type is a common type created for cds_t or cs_t so code can expand based on

compile mode.

Page 12 of 13

WASv61_64bit_C_language_considerations_zOS.ppt Page 13 of 13

