| IBM Software Group

64-bit support

Control blocks and pointers

(@business on demand.

© 2007 I1BM Corporation
Updated May 14, 2015

This presentation will discuss control blocks and pointers.

WASV61_64bit_Control_Blocks zOS.ppt Page 1 of 11

IBM Software Group E

Goals

= Goal: Understand the things to watch out for when
control blocks are used between two language
environments and two addressing modes.

= To cover:
» C/C++ and PLX
» Modeless pointers

Control blocks and pointers © 2007 IBM Corporation

The goal of this presentation is to expose the hazards and solutions to maintaining
consistent control block mappings without spending a lot of time managing duplicate code.
This presentation will cover language considerations, some of which should be familiar
and then introduce the concept of ‘modeless pointers’ or “mptrs” for short.

WASV61_64bit_Control_Blocks zOS.ppt Page 2 of 11

IBM Software Group

Section

PLX and C structures

il
il

Control blocks and pointers

This section will discuss PLX and C structures.

WASV61_64bit_Control_Blocks zOS.ppt

© 2007 IBM Corporation

Page 3 of 11

IBM Software Group BH

PLX and C structures

= Design goal: common structure mappings be duplicated as little as
possible

» Same struct definitions in H file used in 31 bit and 64 bit builds
» Same mapping declaration in MAC file used in 31 bit and 64 bit builds
» Ideally the MAC and H file define same structure in all 4 cases

PLX 64bit C 64bit
build build
PLX 31bit C 31bit
build build

64-bit support poses certain problems when dealing with mapping macros for control
blocks. Ideally you should be able to map these control blocks without having several
versions of code and these mappings would be consistent. The above table shows the
area of support that has been addressed. There are control blocks shared between C and
PLX that need to be consistent between 64-bit and 31-bit builds and be consistent across
the two languages.

An interesting angle is that the PLX code is built almost exclusively in 31-bit mode. So the
mapping it has for any given common control block has to match the C header file that
maps it in 64-bit mode in the same driver build.

WASV61_64bit_Control_Blocks zOS.ppt Page 4 of 11

C/C++ considerations - Data type size differences

IBM Software Group

E

VI€ SData Types Size (31bit) Size(64bit)
int 4 bytes 4 bytes
long 4 bytes 8 bytes
long long 8 bytes 8 bytes
pointer 4 bytes 8 bytes
__ptr32 4 bytes(N/A) 4 bytes address
jint 4 byte 4 bytes
jlong 8 bytes 8 bytes
size t 4 bytes 8 bytes

Important rules of thumb:

=|f consistent size is needed: use int or long long rather than long

*|If mode consideration is important in data size: use long
b OMR - %

© 2007 IBM Corporation

Control blocks and pointers

A quick review — remember that certain things in C change size between 31 and 64bit
mode. These differences become problematic in control blocks.

WASV61_64bit_Control_Blocks zOS.ppt Page 5 of 11

IBM Software Group BH

PLX and C structures

* Problem comes into play with pointers

» C heap data comes above the 2 gigabyte addressing
bar

» PLX runs — mostly — in 31 bit mode
= Any data PLX touches is below

= Compiler won't tolerate 64 bit pointers
— Unless building 64 bits
— Or special PLX 64 bit code blocks

» More later on passing data between C and PLX
» z/OS data is below the bar

The problem surrounds the use of pointers. Having a control block without pointers the
mapping is easier because the control block is the same between the two compile modes.
An easier scenario would be to have all 64bit mode systems because there would be no
guestion: all pointers would have to be 8 bytes whether the address is above the bar or
below. However, since not all environments are 64-bit, this is impractical. Most,
practically all, of the PLX code runs in 31-bit mode. It is fine to make every pointer 8
bytes but the PLX compiler is a bit strict in how it handles the code. It will not compile a
ptr(64) in 31-bit mode.

Most of the system data on z/OS is also below the bar, which means more often than not
four byte pointers are what get passed back and forth. It is impossible to dictate that all
pointers be 8 bytes.

WASV61_64bit_Control_Blocks zOS.ppt Page 6 of 11

IBM Software Group EH

PLX and C structures

ACRTs live in 31bit space
Objects are “C” things so can
go above the bar.

ACRWSs are below the bar

= Consider the ACRT
» Used in PLX and C code
» Defined in MAC and H files
» PLX code built in 31 bit mode;
» Structure

= Pointer to Next element onfghain
= 4 unused bytes

= Thread object point
= Pointer to ACRW
= Char 16

1t

Here is an example of a control block that illustrates the compatibility situation. The ACRT

is used in both C and PLX code. It is defined in both an H file and a MAC file. The PLX

code is built in 31-bit mode, which is fine, but the C code is built in both. Left to it's own

desires, the C compiler will end up generating two versions of offsets for fields in the same

gontrol block. One, because of 4 byte pointers and the other because the pointers are 8
ytes.

Let's look at some of the features of the ACRT.

It is used by PLX code which is mostly 31-bit mode so the ACRT has to live below the bar.

That means the chaining pointer has to be a 4 byte pointer. 8 byte pointers will not work

because the 31-bit code will look at offset zero for four bytes and find a zero. The C

mapping is interesting because it will make an 8 byte pointer in 64-bit compile unless ones

ig\tlentioRs gre asserted. Another important point is that the ACRT has to be allocated
elow the bar.

The ACRT Points to C objects. They come from the C heap, which is above the bar.
Things that could go above the bar have been allocated above the bar whenever possible.
The ACRT pointer needs to be 8 bytes and the PLX code can not try to access it. Since it
is a pointer to a C object, it is unlikely the PLX code will access it. Notice that problems
may arise if this field is a four byte field in 31-bit mode and 8 bytes in the other.

There is a pointer to ACRWSs. The pointer lives below the bar and likewise this pointer
needs to be four bytes and stay four bytes.

WASV61_64bit_Control_Blocks zOS.ppt Page 7 of 11

IBM Software Group

Section

Modeless pointers

b
i

Control blocks and pointers

© 2007 IBM Corporation

This section will discuss a new time saving construct: the modeless pointer.

WASV61_64bit_Control_Blocks zOS.ppt

Page 8 of 11

IBM Software Group B

PLX and C structures

* New concept: the modeless pointer

» Allocates 8 bytes regardless of mode

» When in 31bit, allot 4 bytes of filler then 4 byte pointer
* In C/C++

__mptr(target_type, pointer_ name) ;
* In PLX
?BBOUMPTR LEVEL(n) NAME(pointer_name) [FIRM31(Y)];
» Since PLX is 31 bit mode, you probably don’treally expect a ptr(64)
» ?2BBOUMOTR generates $$pointer_name to force compilererror

» FIRM31(Y) indicates you’re firmly aware that PLX tends to run in 31bit mode and
waives the “$$”.

= Ensure MPointers have double word alignment!
= Source location: bbou64b.h and bbomptr.mac

The problem with pointers is not that they change sizes, it is that the offset of everything in
the structure that follows will get thrown about depending on the length of the pointer. So
the mptr was created to maintain steady field offsets.

An mptr always takes up 8 bytes even though the pointer itself might be only 4 bytes. The
advantage is that the pointer itself accommodates the amode of the code that is accessing
it but within the structure mapping, the overall field width is consistently 8 bytes.

The chart shows how mptrs are declared in both C and PLX. These code macros expand
into 8 byte pointers for 64-bit compiles. In 31-bit compiles, a mptr expands into a four byte
filler and a four byte pointer. That is how the overall 8 byte width stays consistent in the
structure. An important note is that 64-bit pointers must be on a doubleword boundary so
be careful not to let the PLX compiler stick in slack bytes to ensure a proper alignment.

Among the oddities of the PLX declaration is the optional keyword FIRM31 which has one
useful parameter: “Y”. Consider that PLX code tends to run only in 31-bit mode so if you
are declaring an mptr that is shared between C and PLX, it had better be a four byte
pointer. But if the pointer exists in this control block but is not actually referenced in PLX
you are fine. If the pointer is referenced in PLX it could be problematic for C to stick an 8
byte address into a field of which 31-bit mode PLX will use only the lower word. So to head
off problems, the macro renames the PLX pointer filed and if it is referenced somewhere in
PLX code you will get a compiler error. The FIRM31(Y) prevents the renaming of the

WASV61_64bit_Control_Blocks zOS.ppt Page 9 of 11

pointer because you are telling the macro you are confident that the pointer
will work fine in 31-bit PLX.

MPtrs are defined using macros in bbou64b.h in C and bboumptr.mac for PLX.

WASV61_64bit_Control_Blocks zOS.ppt Page 9 of 11

IBM Software Group Eﬁ

Structures in PLX and C — the ACRT example

gtruct acrt {
acrt * ptr32d next ptr;
unsigned char acrt_unusedl[4];
__mptr(void,acrt thread object ptr);
void * ptr32 acrt acrw ptr;
char acrt pet[1l6];
b7
DCL 1 acrt BDY (DWORD) BASED,
3 acrt _next ptr ptr(31),
3 * fixed (32),

?BBOUMPTR LEVEL (3) NAME (acrt_thread object ptr)
FIRM31(Y); ,

3 acrt_acrw_ptr ptr(31),
3 acrt_pet Char (16) ;

© 2007 IBM Corporation

Here is the ACRT example shown in C and PLX declarations.

-The ACRT lives below the bar so its chain pointer needs to be four bytes in both compile
modes. An important note is the __ ptr32 in the C.

-The thread object pointer must be able to point to storage above the bar when the C code
is running in 64bit mode so an mptr construct is used. The PLX code uses the FIRM31(Y)
but that is probably unnecessary. Note that the mptr is on a DW boundary.

-Finally, the ACRW lives below the bar so the pointerto it getsa __ ptr32in C.

WASV61_64bit_Control_Blocks zOS.ppt Page 10 of 11

IBM Software Group

Trademarks, copyrights, and disclaimers

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or
both:

IBM

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document
could include technical inaccuracies ortypogr:jphlcal errors. IBM may make improvements or changes in the products or‘gmgrarns described herein at
any time without notice. Any statements ing IBM's future direction and intent are subject to change or withdrawal without notice, and represent
goals and objectives only. References in this document to IBM products, progbrams or services does not im| lhat IBM intends to make such products,
programs. or services available in all countries in which IBM operates or does business. Any reference to an | nogram Product in this document is
not intended to state or imply that only that program product may be used. Any functionally equivalent program, that oes not infringe IBM's intellectual
property rights, may be u: instead.

&fomgﬂu%nmmded "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS 1S"

/ARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT . IBM shall have no nasponmbllrty to update this information. IBM products are
warranted, if at all, accordingto the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty,

International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with
this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights.
Inquiries regarding patent or copyright licenses should be made, in wrmng to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Performance is based on measurements and projections using standard 1BM benchmarks in a controlled environment. All customer examples
described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. The actual
throughput or performance that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's
job stream, the 1/0 configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user
will achieve throughput or performance improvements equnralem to the ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract and IBM Corp.

Control blocks and pointers © 2007 IBM Corporation

WASV61_64bit_Control_Blocks zOS.ppt Page 11 of 11

