
WASv61_64bit_Control_Blocks_zOS.ppt

This presentation will discuss control blocks and pointers.

Page 1 of 11

WASv61_64bit_Control_Blocks_zOS.ppt

The goal of this presentation is to expose the hazards and solutions to maintaining

consistent control block mappings without spending a lot of time managing duplicate code.

This presentation will cover language considerations, some of which should be familiar

and then introduce the concept of ‘modeless pointers’ or “mptrs” for short.

Page 2 of 11

WASv61_64bit_Control_Blocks_zOS.ppt

This section will discuss PLX and C structures.

Page 3 of 11

WASv61_64bit_Control_Blocks_zOS.ppt

64-bit support poses certain problems when dealing with mapping macros for control

blocks. Ideally you should be able to map these control blocks without having several

versions of code and these mappings would be consistent. The above table shows the

area of support that has been addressed. There are control blocks shared between C and

PLX that need to be consistent between 64-bit and 31-bit builds and be consistent across

the two languages.

An interesting angle is that the PLX code is built almost exclusively in 31-bit mode. So the

mapping it has for any given common control block has to match the C header file that

maps it in 64-bit mode in the same driver build.

Page 4 of 11

WASv61_64bit_Control_Blocks_zOS.ppt

A quick review – remember that certain things in C change size between 31 and 64bit

mode. These differences become problematic in control blocks.

Page 5 of 11

WASv61_64bit_Control_Blocks_zOS.ppt

The problem surrounds the use of pointers. Having a control block without pointers the

mapping is easier because the control block is the same between the two compile modes.

An easier scenario would be to have all 64bit mode systems because there would be no

question: all pointers would have to be 8 bytes whether the address is above the bar or

below. However, since not all environments are 64-bit, this is impractical. Most,

practically all, of the PLX code runs in 31-bit mode. It is fine to make every pointer 8

bytes but the PLX compiler is a bit strict in how it handles the code. It will not compile a

ptr(64) in 31-bit mode.

Most of the system data on z/OS is also below the bar, which means more often than not

four byte pointers are what get passed back and forth. It is impossible to dictate that all

pointers be 8 bytes.

Page 6 of 11

WASv61_64bit_Control_Blocks_zOS.ppt

Here is an example of a control block that illustrates the compatibility situation. The ACRT
is used in both C and PLX code. It is defined in both an H file and a MAC file. The PLX
code is built in 31-bit mode, which is fine, but the C code is built in both. Left to it’s own
desires, the C compiler will end up generating two versions of offsets for fields in the same
control block. One, because of 4 byte pointers and the other because the pointers are 8
bytes.

Let’s look at some of the features of the ACRT.

It is used by PLX code which is mostly 31-bit mode so the ACRT has to live below the bar.
That means the chaining pointer has to be a 4 byte pointer. 8 byte pointers will not work
because the 31-bit code will look at offset zero for four bytes and find a zero. The C
mapping is interesting because it will make an 8 byte pointer in 64-bit compile unless ones
intentions are asserted. Another important point is that the ACRT has to be allocated
below the bar.

The ACRT Points to C objects. They come from the C heap, which is above the bar.
Things that could go above the bar have been allocated above the bar whenever possible.
The ACRT pointer needs to be 8 bytes and the PLX code can not try to access it. Since it
is a pointer to a C object, it is unlikely the PLX code will access it. Notice that problems
may arise if this field is a four byte field in 31-bit mode and 8 bytes in the other.

There is a pointer to ACRWs. The pointer lives below the bar and likewise this pointer
needs to be four bytes and stay four bytes.

Page 7 of 11

WASv61_64bit_Control_Blocks_zOS.ppt

This section will discuss a new time saving construct: the modeless pointer.

Page 8 of 11

WASv61_64bit_Control_Blocks_zOS.ppt

The problem with pointers is not that they change sizes, it is that the offset of everything in
the structure that follows will get thrown about depending on the length of the pointer. So
the mptr was created to maintain steady field offsets.

An mptr always takes up 8 bytes even though the pointer itself might be only 4 bytes. The
advantage is that the pointer itself accommodates the amode of the code that is accessing
it but within the structure mapping, the overall field width is consistently 8 bytes.

The chart shows how mptrs are declared in both C and PLX. These code macros expand
into 8 byte pointers for 64-bit compiles. In 31-bit compiles, a mptr expands into a four byte
filler and a four byte pointer. That is how the overall 8 byte width stays consistent in the
structure. An important note is that 64-bit pointers must be on a doubleword boundary so
be careful not to let the PLX compiler stick in slack bytes to ensure a proper alignment.

Among the oddities of the PLX declaration is the optional keyword FIRM31 which has one
useful parameter: “Y”. Consider that PLX code tends to run only in 31-bit mode so if you
are declaring an mptr that is shared between C and PLX, it had better be a four byte
pointer. But if the pointer exists in this control block but is not actually referenced in PLX
you are fine. If the pointer is referenced in PLX it could be problematic for C to stick an 8
byte address into a field of which 31-bit mode PLX will use only the lower word. So to head
off problems, the macro renames the PLX pointer filed and if it is referenced somewhere in
PLX code you will get a compiler error. The FIRM31(Y) prevents the renaming of the

Page 9 of 11

pointer because you are telling the macro you are confident that the pointer
will work fine in 31-bit PLX.

MPtrs are defined using macros in bbou64b.h in C and bboumptr.mac for PLX.

WASv61_64bit_Control_Blocks_zOS.ppt Page 9 of 11

WASv61_64bit_Control_Blocks_zOS.ppt

Here is the ACRT example shown in C and PLX declarations.

-The ACRT lives below the bar so its chain pointer needs to be four bytes in both compile

modes. An important note is the __ptr32 in the C.

-The thread object pointer must be able to point to storage above the bar when the C code

is running in 64bit mode so an mptr construct is used. The PLX code uses the FIRM31(Y)

but that is probably unnecessary. Note that the mptr is on a DW boundary.

-Finally, the ACRW lives below the bar so the pointer to it gets a __ptr32 in C.

Page 10 of 11

WASv61_64bit_Control_Blocks_zOS.ppt Page 11 of 11

