
WASv61_64bit_Miscellaneous_zOS.ppt

This presentation will address any additional 64-bit topics that have not already been

covered for a WebSphere Base Application Server version 6.1 on z/OS.

Page 1 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

This presentation will discuss the recoding of C routines in PLX and WebSphere

Messaging TCPIP buffer copy in PLX. BBO_ECB, IPCS updates and ACRW handling will

also be discussed.

Page 2 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

Several C utility routines for SMF have been replaced with PLX code.

The GETSTOR and FREESTOR functionality have been replaced by PLX code that

allocates storage using a CPOOL. The CPOOL is created by bboossmf.plx during SMF

initialization and the CPOOL ID is stored in bacb_smf_cpool.

The CVC and LONGAVG routines are now in bboosmut.mac, also StrToBin now resides in

bbooase3.plx.

Page 3 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

The ORB_Request constructor in bbooorbr.plx was changed to create the BBO_ECB

object without a pre-allocated ECB. Since ECBs must be below the bar, the pre-allocation

required RAS_MALLOC31, which is extremely slow. The pre-allocated ECB has not been

used in the past.

Page 4 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

IPCS formatters for z/Websphere related dumps have been updated to handle 64bit data.

Formatter utility code resides in SBBOMIG and tends to be specific to the version of the

code that produced the dump.

The CBDATA verb to format z/Websphere data is now BBORDATA.

Page 5 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

IPCS commands now accept 64-bit addresses, which can be entered with or without an

underscore separator before the last 8 digits. Leading zeros are optional. Here is an

example of a command to format the SessionManager object which is above the bar.

The formatter determines whether the dump was 64-bit or 31-bit mode by looking at a new

flag in the BACB. For 64-bit mode dumps, you will see “zWAS in 64bit mode” when

formatting the BACB. The absence of this message means the dump is 31-bit.

Page 6 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

Addresses in BBORxxxx messages will always be formatted as 64-bit, even if they are

only 31-bit, for example, TCB.

In a control block dump, a 64-bit address will appear as two words without the _

connector. In a formatted object, the address in the dump of an attribute is shown with the

underscore connector and, if the value of the attribute is a 64-bit pointer, it will as well.

Page 7 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

Several stack and queue classes depend on compare and swapping for the serialization

when adding or deleting member elements. The next element address and the sequence

number are what get tested and swapped using a CDS. This had to be changed for 64bit

because the 8 byte pointer maxed out the CDS. Since CDSG is supported natively in the

C/C++ compiler, classes that use a pointer plus sequence number for serialization were

updated.

Page 8 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

The first update is in the stack or queue element header. The design was to allow for an 8

byte compare and swap in 31-bit mode and 16 bytes in 64-bit mode. By making a long of

the sequence number, or whatever the low order component is, the header is the right size

in both build modes.

Other changes included updating the means for doing the compare and swap. It expands

into a CDS or CDSG depending on the compile mode.

Page 9 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

Something that was discovered later was that the CDSG instructions require that their

storage operand be on a quad word boundary. That was fixed by adding the C aligned

attribute on the element declarations. Since it is unnecessary in 31-bit, the LP64 macro

logic, as shown here, is used.

Page 10 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

An enhancement was made to the CRA WebSphere Messaging buffer handling. These
buffers contain data that was copied into or out of a z/OS data space. C code now deals
with the data in buffers and there is an interface to the PLX code that handles the copying
with the data space.

In 64-bit mode, the interface has to be through glue code. The primary function is to copy
the buffers below the bar when the data is on the way in, and above the bar when the data
is on the way back out. Since the buffers are big chunks of data, the glue copying takes
time.

It turns out that the PLX code itself does not do much but copy the buffer. Given this, it
was too much overhead to copy the data first in the glue code and very soon after copy it
a second time in the PLX code.

The buffer handling was changed to eliminate the extra copying by making the PLX code
smart enough to do it in 64-bit mode. The glue code was changed to not do the buffer
copy. The glue code is still necessary, as the plist and parameters are needed to be below
the bar because the PLX module itself is still in 31-bit mode. That also meant that the
buffer address could not be a 64 pointer. The PLX compiler does not accept declaring
ptr(64) in 31-bit mode so a fixed(64) or in C long is used.

Page 11 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

In the receive and send buffer PLX modules, a 64-bit aware block of code is used by the

begin Amode(64) construct. Within that code the compiler goes into 64-bit mode and

allows specifying 64-bit pointers. The SYSSTATE macro enables the generated macro

code to be 64-bit aware. For example, register operands are treated as 64-bit registers.

Page 12 of 14

WASv61_64bit_Miscellaneous_zOS.ppt

The last topic to cover is the ACRW. The ACRW which is a general purpose passer of

data and pointer information, was affected by 64-bit support. The fields in the ACRW were

rearranged and now can accommodate four 8 byte pointers or mptrs and 8 one word data

areas. The areas are overlaid and so care needs to be taken when passing and extracting

information in the ACRW.

Page 13 of 14

WASv61_64bit_Miscellaneous_zOS.ppt Page 14 of 14

