
Page 1 of 31

IBM Software Group

© 2007 IBM Corporation

SW5706
Connection pool tuning and management
problems

4.0

This unit describes how to troubleshoot connection pool tuning and management problems in WebSphere® Application Server.

Page 2 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

2

Unit objectives

After completing this unit, you should be able to:

� Identify connection pool problems

�Use Tivoli Performance Viewer (TPV) to monitor a
connection pool and generate tuning advice

�Enable tracing for connection pool manager
components and interpret the trace data

�Perform problem determination tasks to find the
root cause of a connection pool problem

After you complete this section, you will be able to identify problems in connection pools, know how to use Tivoli Performance
Viewer, TPV, to monitor a connection pool, understand connection pool tracing data, and perform the problem determination
tasks to troubleshoot a connection pool problem.

Page 3 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

3

What is connection pooling?

� Application server maintains a pool of ready-to-use
connections to a data store

� Benefits:

�Minimizes database session setup and tear-down

�Improves application database access performance

�Spreads out connection cost over repeated uses

Database

Data source

or

Connection
factory

Connection
object

Application client

Connection
pool

Applications need to acquire a connection to a data store each time they want to retrieve information from the store. The average connection object is one
to two megabytes in size and contains a great deal of information about the connection context. Creating and terminating those connections is actually a
very time consuming operation and so it can easily slow down the application. To fix this problem, WebSphere Application Server uses a pool of
connections that can be reused by applications. This allows the cost of establishing each connection to be spread out across several requests and can
significantly improve performance. An application that needs to access the data store will simply request a connection from the pool and return the
connection when it is finished. An example of this work flow is illustated on the slide.

Page 4 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

4

JCA connection pooling architecture

� J2EE Connector
Architecture (JCA) V1.5
specification

�Connection pooling is
supported by two
components:

�JCA connection manager
(called J2C connection pool
manager in WebSphere)

�Relational resource adapter

Application Server

WebSphere Application Sever implements connection pooling by following the J2EE Connection Architecture version 1.5.
There are several objects involved in pooling connections but they can be grouped into two basic components, the JCA
connection manager and the Relational Resource Adapter. An application that needs a database connection will go to the
Resource Adapter to retrieve a Connection Factory. The Connection Factory will delegate a request to the correct Connection
Manager. The Connection Manager is responsible for either returning an existing connection from the pool of available
connections or creating a new one if none are available. The application releases the connection when it is finished interacting
with the database and the Connection Pool will return it to the pool.

Page 5 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

5

Types of connection pools in WebSphere
� JDBC provider connection pool
�Enables access to a relational database

�Provides a connection via a JDBC™ data source
� Support for WebSphere Version 4 data sources also provided

�Managed in the administrative console under JDBC Providers

� JMS provider connection pool
�Enables access to the data store used by the default messaging

engine or a WebSphere MQ provider

�Provides a connection via a JMS connection factory

�Managed in the administrative console under JMS Providers

� EIS Connection pool
�Enables access to enterprise information systems such as CICS®,

legacy databases such as IMS™ and other back-end systems

�Provides a connection via a data source or connection factory
�Managed in the administrative console under Resource Adapters

WebSphere Application Server uses a J2C connection pool manager to maintain three different connection pools. The JDBC
connection pool is used to manage connections to relational databases such as DB2. This pool can be adjusted by going to the
JDBC Providers area of the Administrative Console. There is also a JMS pool for managing requests for connections to a
default messaging engine or WebSphere MQ. This pool is maintainted in the JMS Providers section of the adminstrative
console. Finally, WebSphere provides an EIS connection pool that manages connections to CICS and legacy back-end
systems such as IMS. This connection pool is controled through the administrative console un the Resource Adapters section.

Page 6 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

6

Detecting connection management related
problems
� Look in the WebSphere SystemOut.log and SystemErr.log

files for the following types of messages:

�J2EE connector (J2C Connection pool manager)

�Most recent JCA 1.5 compliant connection manager

J2CA or CWWJC

�WebSphere Version 4 connection manager

�Legacy connection manager used to support J2EE 1.2
applications

CONM or CWWCM

�WebSphere client (J2EE application client manager)WSCL or CWWSC

�WebSphere transaction managerWTRN or CWWTR

�Database managerSQLException or database error code

�JCA resource adapter

Message Source

DSRA or CWWRA

Message Prefix or Type

Connection related log messages are sent to the SystemOut and SystemErr logs in the appropriates profile‘s log directory. The
System logs are the best starting place to determine if you have a problem in one of the connection pools. WebSphere
Application Server maintains connection pools for multiple connection types so it stands to reason that there are several
different messages that pertain to the different connection types. The various connection based prefixes are listed on this slide
along with the connection types that they pertain to. The best way to determine if you are experiencing connection problems is
to search the logs for any of the message prefixes then correlate them to the appropriate message source.

Page 7 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

7

Typical connection pool problem symptoms

�Sporadic failure to connect to an existing data
source or connection factory:

�Next, look at the WebSphere logs to see if it
additionally shows:

�No specific exception
� Probable cause: Improperly tuned connection pool settings

�ConnectionWaitTimeoutException
� Probable cause 1: Improperly tuned connection pool settings

� Probable cause 2: Connection leak

�StaleConnectionException
� Probable cause: Stale connection

Most people find out they are experiencing a connection pool problem by noticing symptoms in their application‘s behavior instead of noticing events in
the SystemOut and SystemErr logs. There is usually a problem with a connection pool when an application experiences sporadic failures when trying to
connect to a data source. This means the application was able to connect to the data source and work normally but then started to see intermittent
failures or a decrease inuser response time. In either case, the next step is to check the log files to help narrow down the prossible cause for the sporadic
behavior. There are three possible outcomes from checking the log files. The first outcome is that you do not find connection exceptions. In this case,
the problem is likely due to a tuning paramater in the appropriate connection pool. However, if you find ConnectionWaitTimeoutException in the log files
then there are two probable causes. You either need to change the connection pool settings or there is a connection leak somewhere in the system.
Finally, if you find StaleConnectionException in the log then, as the exception indicates, there is probably a problem with connections going stale.

Page 8 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

8

Connection pooling problem determination
path

If it helps, you can think of troubleshooting a connection pool problem in terms of a decision tree. The tree starts with the
assumption that you are seeing sporatic behavior from your application or you have another reason to believe there is a
problem in the connection pool. From there, you review the logs and look for Stale Connection Exceptions. If you find any then
the next step is to begin troubleshooting a stale connection problem. Otherwise, it is best to review the connection pool‘s
configuration and make sure it is not causing the problem. If the configuration checks out then you should begin
troubleshooting a possible connection leak in the connection pool.

From here, we will take a detailed look at each of the three troublshooting steps.

Page 9 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

9

Troubleshooting connection pool configuration
in the problem determination path

In the case where the symptom for a connection pool problem is not accompanied by a StaleConnectionException in the
WebSphere logs, start your problem determination effort by looking at the connection pool configuration to rule out any
performance tuning issues.

Page 10 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

10

The need for connection pool tuning

� An improperly tuned connection pool can result in:

�Poor end user response if the client is consistently waiting for a free
connection

�Application exceptions if the client cannot get a connection within the
specified wait timeout interval

�Reduced server throughput if unused connections are wasting system
resources

� Connection pools need to be properly tuned to ensure
optimal performance:

�Maximize the chances that connections are available when needed

�Minimize the number of idle connections

�Minimize the number of orphaned connections

Connection pools allow you to set a range for the number of connections that will maintained by WebSphere Application Server. It is important to get the
tuning parameters right otherwise you might inflict the application with problems. Setting the pool size too small can slow down the application because it
will have constantly wait for free connectiongs but setting it too large will waste resources and impact the sever‘s throughput. The timeout can also cause
application exceptions if requests go past the time interval. In general, you want to try and tune a connection pool to achieve three goals. First, you want
to maximize the change that connections are available when needed. This means setting the connection pool size so that it is big enough to have free
connections when they are needed. Second, you want to minimize the number of idle connections because connections that are not being used are
overhead that reduces the server‘s throughput. Finally, you want to set the connection timeout so that it minimizes the number of orphaned connections
but does not interfere with connections that are operating normally.

Page 11 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

11

Key connection pool parameters

� Maximum connections

�Specifies the maximum number of connections that can be created in
the pool

�Default value is 10

�A value of 0 allows the number of physical connections to grow
infinitely and causes the Connection timeout value to be ignored

� Connection timeout

�Specifies the interval, in seconds, after which a connection request
times out and a ConnectionWaitTimeoutException is thrown.

�Default value is 180 seconds (three minutes)

�A value of 0 instructs the pool manager to wait as long as necessary
until a connection becomes available

There are a few of the connection pool parameters that play a significant role in achieving the goals we discussed on the previous slide. The first of these
paramaters is the maximum connections count. This value governs the maximum size of the connection pool. If the pool has already reached the
maximum size it will not allow a new connection to be created and will instead force a request to wait for an existing connection to free up. However, you
can set the maximum value to 0 and allow the pool to grow without constraint. This will also cause the Connection Timeout value to be ignored. The
connection timeout is how long a connection request will wait for a free connection before it quits and throws a ConnectionWaitTimeoutException. You
can also disable the connection timeout by setting it to 0 and allowing a request to wait as long as it takes to receive a connection.

Page 12 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

12

Connection pool parameters in the
administrative console

There are several other connection pool properties that can be configured in the administrative console. Minimum Connections,
for example, specifies the number of physical connections that should be maintined. Note, this does not mean the connection
pool will start with the minimum number of connections but that it will not go beneath that value once it reaches it.
Many of the connection properties interact with eachother. For example, the Reap time specifies, in seconds, the interval
between runs of the pool maintenance thread. This value will affect the accuracy of both the Unused timeout and the Aged
timeout.

Page 13 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

13

Connection pool tuning tasks

� Monitor connection pool run-time behavior
�Enable PMI and select desired statistic set

�View connection pool performance metrics using
Tivoli Performance Viewer (TPV)

�Generate tuning advice using TPV Performance
Advisor

� Tune connection pool parameters
�Make one change at a time

�Apply recommendations and best practices

� Test application
�Use a load generation tool to simulate production-

like loads

�Compare results with original baseline
�Document results

Monitor

Tune

Test

Performance tuning, in general, is an iterative and incremental process consisting of multiple Monitor-Tune-Test cycles. Having
the right tools, including a load generation tool to simulate real-world users for load testing, is a must to ensure successful
results. The art of performance tuning is a mixture of documentation, test data, and experience. There are some tools that can
assist with this practice such as the Tivoli Performance Advisor embedded in WebSphere Application Server V6, but the
suggestions that it offers still need to be verified through load testing. The general method for getting the correct value is to
divide and conquer by increasing the timeout and connection parameters until the timeout issue disappears and then backing
them off until any wasted resources are recovered. Note that the Performance Monitoring Infrastructure (PMI) is enabled by
default in WebSphere V6.

Page 14 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

14

Monitoring the connection pool using TPV

Average percent of the
time that all connections
are in use

Average number of
threads that are
concurrently waiting for a
connection

Average percent of the
pool that is in use

Size of the connection
pool

Description

�The optimal value for the pool size is that which reduces
this value

�Counter is already enabled as part of the Basic (default)
PMI statistic set

WaitingThreadCount

�If consistently low, you may want to decrease the pool size

�Counter is already enabled as part of the Basic (default)
PMI statistic set

PercentUsed

�Ensure that you are not consistently maxed at 100%

�Counter requires the selection of either All or Custom PMI
statistic set

PercentMaxed

�Increases as new connections are created (up to the value
of Maximum connections) and decreases when connections
are destroyed

�A significant number of creates and destroys is an
indication that the pool size (Maximum connections) should
be adjusted

�Counter is already enabled as part of the Basic (default)
PMI statistic set

What to look for

PoolSize

Metric Name

Here are some of the key metrics that WebSphere Application Server monitors in the PMI. These metrics are displayed in TPV
under the JDBC Connection Pools and JCA Conection Pools mudules. To access these modules, open the administrative
console and natiate to Monitoring and Tuning, then Performance Viewer, then Current Activity. From there, select the server
you want to monitor and expand the Performance Modules. Select the appropriate Connection Pool, JDBC ord JCA, and then
check the metrics you wish to display.

Page 15 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

15

TPV Connection pool monitoring example

This is a screen camptured example of Tivoli Performance Viewer displaying information on the JDBC Connection Pools.

* The cyan colored graph plots the PercentUsed metric (average percent of the pool that is in use).

* The dark green graph plots the FreePoolSize metric (number of free connections in the pool).

* The green graph plots the CreateCount metric (total number of connections created). 10 connections have been created
reaching the default Maximum connections value for the pool.

Notice that, as expected, when the FreePoolSize is 0 indicating no connection available in the pool, the PercentUsed value is at
100%.

Page 16 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

16

Generating tuning advice using TPV
Performance Advisor
� TPV Performance Advisor can provide configuration advice

for connection pool size:

�Advice appears in the Performance Advisor section of TPV

�Based on collected PMI data over the last one minute interval

�Uses IBM-defined rules of thumb for advice basis

� Limitations:

�Pool sizing advice may not be generated if your timeout values are
too high (pools are not returning back to minimum values)

�Advisor only gives recommendations when CPU usage is greater than
or equal to 50%

TPV Performance Advisor is one of the ways that WebSphere Application Server can provide tuning advise. TPV Performance
Advisor runs on demand and outputs recommendations to a grapical interface in teh administrative console. It‘s
recommendations are based on situations it observes. For example, if it observes that the number of connections is
continuously low (equal to the minimum number of connections) then it will recommend that you lower the size of the
connection pool. The TPV Performance Advisor can be accessed by opening the administrative console then navigating
through Monitoring and Tuning, then Performance Viewer, then finally Current Activity. Here, you select the server you want to
monitor and click on Advisor to see the TPV recommendations.

Page 17 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

17

Tuning the connection pool

�Goal is to create a large enough pool that can
handle a peak load but does not unnecessarily take
up system resources

�Unused connections during non-peak periods can be
controlled with the Minimum connections parameter

� In order to successfully tune the connection pool,
you need to know two pieces of information:

�The requests per second that occur during a peak

�How long the database takes to respond to each type of
operation
� SELECT, INSERT, UPDATE, and so on

Tuning the connection pool settings for optimal performance during peak load is an iterative activity. The correct parameter
values can only be discovered through trial and error. In particular, the two parameters that will have the greatest effect on
correcting connection pool configuration errors are the connection timeout and maximum connections. If the time taken to
complete a database operation is greater than the amount of time a thread is willing to wait for a resource (the Connection
Timeout), then increasing the number of available connections will not solve the problem. Conversely, if the connections are
short-lived, then increasing their number could lead to the application server being overloaded in other areas during a peak
because the extra connections are unnecessarily consuming resources. Also, the number of idle connections during off peak
periods should be weighed against the pool ramp up time when a peak occurs. By understanding the nature of these
parameters and the nature of the database operations that will occur during a peak load, an optimal configuration can be
achieved leading to optimal performance with the lowest possible overhead.

Page 18 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

18

Connection pool tuning best practices
� Maximum connections setting

�Double the number of the Maximum connections parameter then slowly back
it down

�Better performance is generally achieved if this value is set lower than the
value for the maximum size of the Web container thread pool

� Connection timeout setting
�If a ConnectionWaitTimeoutException is found in the WebSphere logs:

� Obtain the average database operations duration for the application
� Start with a value that is 5 seconds longer than this average
� Gradually increase it until problem is resolved or setting is at the highest value that the client will

tolerate

� Before you increase the pool size, consult the database
administrator
�Ensure that the database server is configured to handle the maximum pool

size setting

�In a clustered environment, there is the potential of simultaneously allocating
Max connections form all servers simultaneously

The database connection pool Minimum and Maximum connections values are often misunderstood. If you set a maximum of 40 connections and a minimum of 10 connections, the pool will
not start with 10 connections. The value of 10 connections minimum, is actually a low water mark. Until there are 10 connections required concurrently, the pool will only contain the
maximum amount of concurrent connections required up to that point. Therefore, if the number of concurrent connections has only ever reached six, then the pool will contain 6 connections.
Once the number of connections needed exceeds 10, the number of connections in the pool will not drop below 10 until the pool is cleaned out. In other words, after the reap time expires, all
unused connections will be destroyed until the Minimum connections threshold is reached. Configuring a data sources should be done in consultation with the database administrator. For
instance, the connection pool size should not be larger than the number of agents or connections allowed on the database server. This can become an issue, especially if cloning is used,
because each application server will allocate its own pool. To compute the maximum connections the database may see, multiply the connection pool size by the size of the cluster. For
example, assume the connection pool maximum is 10 (the default), and you have a deployment of 2 instances of an application server on each of 2 hosts. There is a potential for up to 40
connections to be open against the database simultaneously. An application that does significantly more INSERT and UPDATE operations than SELECT operations will require greater
resources at the database server. If auto indexing is activated then the database could be spending a lot of its time re-indexing after each INSERT or UPDATE. If auto indexing is turned off,
then any SELECT operations could become more expensive because the indexes have become stale. In either case, greater overhead will be incurred for applications that are modifying the
data in the database.

Page 19 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

19

Troubleshooting connection leaks in the
problem determination path

After you have ruled out the possibility of a stale connection and connection pool tuning problem, consider the possiblity of a
connection leak.

Page 20 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

20

What is a connection leak?

�A connection leak is a situation that arises when
allocated connections are not properly released
back to the pool after use.

�End user response time increase

�Eventual system lock-up if all worker threads are waiting
for a connection

�ConnectionWaitTimeoutExceptions to be thrown when the
Connection timeout threshold is reached

A connection leak is typically identified by a ConnectionWaitTimeoutException in the WebSphere logs. WebSphere Application
Server is smart enough to eventually time-out orphaned connections and return them to the pool, but for an application that
makes frequent use of database connections, this might not be enough. New connections can get queued up waiting for the
database while old connections are waiting to be timed out. This can bring the application grinding to a halt, and you can see
ConnectionWaitTimeoutExceptions.

Page 21 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

21

Common causes of connection leaks

� Poorly-written applications often do not properly release
database connections
�Forget to call connection.close()in the finally{} block

�Also caused by one method getting a connection, invoking multiple
methods, and then forgetting to close the connection when done

� Orphaned connections will only return to the pool after
timeout

�Can cause a back-up of new connections waiting for old connections
to time-out

�New connections that have waited too long throw a
ConnectionWaitTimeoutException

The most common reason for a connection leak is simply that an application does not deffinsively manage the connections it
requests from WebSphere Application Server. This often happens because the application does not properly use the
connection.close() method. Connection.close() should be called in the finally{} block to ensure that connections will be closed
properly. Unfortunately, connection leaks have traditionally been hard to diagnose because the error messages do not usually
provide specific enough information about the source of the problem. A source code review is usually needed to find where the
connections are not being properly closed.

Page 22 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

22

Connection leak diagnosis tasks

�Enable connection leak trace facility

�Use administrative console

�Run and monitor application

�Wait for ConnectionWaitTimeoutException(s) to occur

�Review and analyze trace file

�Locate source of leak and resolve problem

Determining the root cause of a connection leak will often require a code review. However, there are tools built into WebSphere
Application Server that can help narrow down the search. The most useful of which is the connection leak trace facility.
Connection leak tracing will allow you to gather more detailed information about the leak and better approach improving the
application. The trace utility can help you determine if connections are not being closed or if the application should simply be
desigend to use fewer applications.

Page 23 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

23

Connection leak trace facility

�A connection leak trace facility is available in
WebSphere to provide detailed diagnostic
information

�Prints stack traces of all open connections to trace.log
when a ConnectionWaitTimeoutException occurs

�Enables you to narrow the search for the responsible
source code

�Light-weight with lower performance overhead than
standard connection manager tracing (1-5% impact)

� Limitation:

�Connection leak trace facility only prints a stack trace of
those connections that have been in use for more than 10
secondsWhen a thread times out waiting on a connection from a full connection pool, it will throw a ConnectionWaitTimeoutException.

When this exception is thrown, the connection leak tracer will print out the stack traces for every open connection. It does so
only when a problem has occurred, providing instant recognition of when it occurred and reduced overhead (1-5%) compared to
the WebSphere tracing mechanism. This feature is useful because it shows you the call stacks for all open connections at the
time of the exception. This enables you to significantly narrow your search area when you look at the application’s source code
to try and find the responsible code. It is also be helpful to IBM support, because it will help distinguish between application
problems and WebSphere defects. When you enable the connection leak trace facility, for every time interval (the default is 10
seconds), the WebSphere connection pool manager checks how long a connection has been in use and prints the stack trace
to the trace.log file. Currently the default time interval is unchangeable. If you have a need to change the default value, contact
IBM technical support to obtain an iFix that allows you to add a custom property to the data source configuration.

Page 24 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

24

Enabling the connection leak trace facility

�Enabled using a standard trace string:

�ConnLeakLogic=finest

The connection leak trace facility is enabled throug the Adminstrative Console. To enable the facility, start to navigating to
Troubleshooting, then logs and trace. Select teh application server and then Diagnostic Trace. Make sure loggin is Enabled
and then click change log detail levels. You can then specify the desired trace level under the ConnLeakLogic category.

Page 25 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

25

What to look for in the trace
� Search trace.log for the string: Connection Leak Logic Information

� If present, there are connections that have been in use for more than 10
seconds

� Analyze their stack trace to identify suspect application methods

There are a few key lines to look for when you start evaluating the trace files. You will first want to look for a line that containts
the string Connection Leak Logic Information, followed by a colon. This indicates the start of the connection leak logic output.
From there, you should check the time in use and the top of the stack trace for each of the conections. In this example trace,
the doGet() method of SnoopServlet has been using a connection for 20 seconds and is therefore a good suspect for a source
of a leaking connection.

Page 26 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

26

Troubleshooting stale connections in the
problem determination path

If you find StaleConnectionExceptions in the the WebSphere Application Server logs then your choices are clear; start looking
for stale connection problems.

Page 27 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

27

What is a stale connection?

�A stale connection problem arises when a
connection held by a client is not longer valid.

�A connection is no longer usable because of a database
failure

�An attempt is made to re-use an orphaned connection
(applies only to Version 4.0 data sources)

�A connection is closed by the Version 4.0 data source
auto connection cleanup feature and is no longer usable.

A stale connection is essentially a connection that is held by a client but is no longer a valid connection. One way this can
happen is if the other end of the connection, an database for example, experiences a failure and is no longer available. Stale
connections can also occur in Version 4.0 data sources when the connection is closed by the connection cleanup feature but
the client is still trying to use it. This will happen if the connection has not been used in at least twice the Unused timeout value.
At this point, the connection is orphaned and the client will error if it tries to use the connection again.

Page 28 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

28

Recovering from a stale connection

� In general, a stale connection condition indicates that the
connection to the database has gone bad.

�Connection cannot be recovered and must be completely closed
rather than returned to the pool.

� Recovering from stale connections is a joint effort between
the application server run time and the application
developer:

�Application developer can explicitly catch a stale connection exception
and programmatically recover from bad connections (for example, get
a new one).

�Application server will purge the connection pool based on its
PurgePolicy setting and eliminate the bad connection.

An individual connection can not be recovered once it throws a StaleConnectionException. Instead, the best way to recover
from this type of exception is by explicity catching it. Catching a StaleConnectionException while running within the context of a
transaction will allow you the avoid having to repeate the entire transaction. One option is to try and complete the pending
transaction with a new connection.

It is important to note that the Application server will also take actions to recover from a StaleConnectionException depending
on the PurgePolicy setting. It can either clear the entire connection pool, assuming that if one connection went bad then all
other connections will likely have the same problem, or just clear the stale conection.

Page 29 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

29

Other stale connection troubleshooting tasks

� Check database or firewall timeout settings

�Consult with database administrator or network system administrator
for the presence of these timeouts

�If present, they can close connections and cause
StaleConnectionExceptions

� Determine if a specific query is getting the exception

� Trace the problem using one or more of the following
options:

�WAS.database

�RRA

�WAS.j2c

There are several other reasons why a connection might become stale, many of which exist beyond the control of WebSphere
Application Server. One common reason is a discrepency between the firewall timeout settings and the connection timeout
settings. It is generally a good practice to make sure the connection pool aged timeout is less than the firewall‘s timeout and
that both are less than the database timeout. It is also possible that you are experiencing a StaleConnectionException becasue
the returned SQLCode maps to a StaleConnection. If you aren‘t able to find the source of the problem by taking a quick look at
the various components involved in the connection then your best bet is to turn on tracing and gather more information. This is
can be very useful when a connection is unusable because of a SQLException that did not imediately map to a
StaleConnectionException but eventually resulted in one being thrown.

Page 30 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pool tuning and management problems © 2007 IBM Corporation

30

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject= Feedback about
SW5706G09_ConnectionPool.ppt

You can help improve the quality of IBM Education Assistant content by providing feedback.

Page 31 of 31

IBM Software Group

© 2003 IBM Corporation
Connection pools © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

CICS IMS Perform WebSphere

J2EE, JDBC, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

