
SW5706G02_WASCompOverview.ppt Page 1 of 28

®

IBM Software Group

© 2007 IBM Corporation

Updated September 20, 2007

SW570
IBM WebSphere® Application Server V6
Problem determination
Overview of WebSphere Application
Server components

4.0

This module provides an overview of the topology of a system and identifies and
describes key components as well as troubleshooting points.

SW5706G02_WASCompOverview.ppt Page 2 of 28

IBM Software Group

2

WebSphere Application Server components © 2007 IBM Corporation

Unit objectives
After completing this unit, you should be able to:

� Describe stand-alone server architecture

� Describe Network Deployment Cell architecture

� List and describe the function of IBM products involved in implementing stand-
alone and distributed architectures

� Identify the components within the Application server and describe the services
they provide

� Identify the components of an Network Deployment Cell and describe the
function of each

� Describe the different application server clients

� Describe the flow of an application request

� Describe the flow of administration requests

� Identify common troubleshooting points in the end-to-end flow of client request

After completing this unit, you will be able to:

•Describe Network Deployment Cell architecture

•List and describe the function of IBM products involved in implementing stand-alone and
distributed architectures

•Identify the components within the Application server and describe the services they
provide

•Identify the components of an ND Cell and describe the function of each

•Describe stand-alone server architecture

•Describe the different application server clients

•Describe the flow of an application request

•Describe the flow of administration requests

•Identify common troubleshooting points in the end-to-end flow of client request

SW5706G02_WASCompOverview.ppt Page 3 of 28

IBM Software Group

3

WebSphere Application Server components © 2007 IBM Corporation

HTTP Server

HTTP(S)

Plug-in Configuration
File

Application Server (JVM)

E
m

bedded H
T

T
P

S
erver

Web Container

JSPsServlets

HTTP(S)
HTTP
Server
Plug-in

WebSphere architecture runtime and clients

Messaging Engine

Dynamic Cache Name Server Security

Data Replication JMX others

Web Services Engine

Browser

JMS
Client

EJB Container

EJBs
RMI/IIOP

Java Client

RMI/IIOP

Web Services
Client

SOAP/HTTP(S)

SOAP/JMS

Application
DatabasesApplication
Data

JDBC

This diagram illustrates the basic architecture of WebSphere Application Server, including
several of the larger components.
The main element is the application server, a Java process that encapsulates many
services, including the containers, where business logic executes. If you are familiar with
J2EE, you will recognize the Web Container and the EJB container. The Web Container
executes Servlets and JavaServer Pages (JSPs), both of which are Java classes that
generate markup to be viewed by a web browser. Traffic into and out of the Web
Container travels through the embedded HTTP Server. While Servlets and JSPs can act
independently, they most commonly make calls to Enterprise Java Beans (EJBs) to
execute business logic or access data. EJBs, which run in the EJB container, are easily
reusable Java classes. They most commonly communicate with a relational database or
other external source of application data, either returning that data to the Web Container
or making changes to the data on behalf of the Servlet/JSP.
The JMS messaging engine is built into the application server. This is a pure-Java
messaging engine. JMS destinations, known as queues and topics provide asynchronous
messaging services to the code running inside the containers. JMS will be covered in
more depth later in this course.
The Web Services engine enables application components to be exposed as web
services, which can be accessed using Simple Object Access Protocol (SOAP).
Several other services run within the application server, including the Dynamic Cache,
Data Replication, Security, and others. These will be covered later in the course.
There are also some important components outside of the application server process.
WebSphere Application Server also provides a plug-in for HTTP servers that determines
what HTTP traffic is intended to be handled by WebSphere, and routes the requests to the
appropriate server. The plug-in is also a critical player in workload management of HTTP
requests, as it can distribute the load to multiple application servers, as well as steer traffic
away from unavailable servers. It too reads its configuration from a special XML file.

SW5706G02_WASCompOverview.ppt Page 4 of 28

IBM Software Group

4

WebSphere Application Server components © 2007 IBM Corporation

Web container
�Each application server runtime has one logical Web container, which

can be modified, but not created or removed

�Each Web container provides the following:
�Web container transport chains

�Servlet processing
�JSP processing

�Session management
�HTML and other static content processing

�Web services engine
�Dynamic caching

�Threading support (thread pool)

�The Web container processes
�Servlets

�JSP files

Each application server has one logical Web container that processes the servlets and jsp
files. The Web container has several components that can be configured through the
administration console.
Requests are directed to the Web container using the Web container inbound
transport chain. The chain consists of a TCP inbound channel that provides the
connection to the network, an HTTP inbound channel that serves HTTP 1.0 and 1.1
requests, and a Web container channel over which requests for
servlets and JSPs are sent to the Web container for processing.
When handling servlets, the Web container creates a request object and a response
object, then invokes the servlet service method. The Web container invokes the servlet’s
destroy method when appropriate and unloads the servlet, after which the JVM performs
garbage collection.
Requests for HTML and other static content that are directed to the Web container are
served by the Web container inbound chain. However, in most cases, using an external
Web server and Web server plug-in as a front-end to a Web container is more appropriate
for a production environment.
Web services are provided as a set of APIs in cooperation with the J2EE
Application specification. Web services engines are provided to support Simple Object
Access Protocol (SOAP).

SW5706G02_WASCompOverview.ppt Page 5 of 28

IBM Software Group

5

WebSphere Application Server components © 2007 IBM Corporation

Enterprise JavaBeans (EJB) container
� The Enterprise JavaBeans (EJB) container provides all the runtime services that

are needed to deploy and manage enterprise beans.

� It is a server process that handles requests for session beans, entity beans, and
message-driven beans (MDBs)

� The EJB container provides an interface between the enterprise beans and the
server.

� Together, the container and the server provide the enterprise bean runtime
environment.

� The container provides many low-level services including
�Threading support (thread pool)
�Transaction support

� The container manages data storage and retrieval for the contained EJBs

� A single container can host more than one EJB Java archive (JAR) file.

The EJB container is responsible for all the runtime services necessary to deploy and
manage all of the enterprise beans. The EJB container provides an interface so that the
deployed EJBs can communicate with the server because EJBs cannot directly
communicate beyond the EJB container. The container also provides thread pooling and
transaction support for the EJBs. Together, the EJB container and the server provide the
EJB runtime environment.

SW5706G02_WASCompOverview.ppt Page 6 of 28

IBM Software Group

6

WebSphere Application Server components © 2007 IBM Corporation

WebSphere Application Server services
� J2EE Connector Architecture service (JCA)

�Transaction service

�Dynamic cache service (Dynacache)

�Data Replication Service (DRS)

�Message listener service

�Object Request Broker (ORB) service

�Administrative service (JMX)

�Diagnostic trace and Debugging service

�Name service (JNDI)

�Performance Monitoring Interface service

�Security service (JAAS and J2 security)

�Service Integration Bus (SIBus) service

WebSphere Application Server is responsible for hosting and managing a large number of
both external and internal services. This is a sampling of some of the services that
WebSphere provides. We will go into more detail on some of the most common services
later in this presentation.

SW5706G02_WASCompOverview.ppt Page 7 of 28

IBM Software Group

7

WebSphere Application Server components © 2007 IBM Corporation

Transaction service
�WebSphere applications use transactions to coordinate multiple updates

to resources as one unit of work.

�Transactions are started and ended by applications or the container.
Hence transactions can be configured as either:
�Container-managed
�Bean-managed

�WebSphere Application Server is a transaction manager that supports
the coordination of resource managers through the XAResource
interface and participates in distributed global transactions.

�You can also configure WebSphere applications to interact with:
�Databases
�Java Message Service (JMS) queues
�JCA connectors

Transactions are a way for WebSphere Application Server to bundle multiple updates into
one unit of work. They type of transactions an application uses depends on the tye of
application. A session bean can either use container-managed transactions where the
bean delegates management of transactions to the container, or bean-managed
transactions where the bean manages transactions itself. Entity beans use container-
managed transactions while web components or servlets use bean-managed transactions.

SW5706G02_WASCompOverview.ppt Page 8 of 28

IBM Software Group

8

WebSphere Application Server components © 2007 IBM Corporation

Dynamic cache service

�The dynamic cache service improves performance by
caching the output of:
�Servlets

�Commands

�Web services

�JSP files

�The following caching features are available in WebSphere
Application Server:
�Cache replication

�Cache disk offload

�Edge Side Include caching

�External caching

The dynamic cache works within an application server by intercepting calls to objects that
can be cached. For example, through a servlet's service() method or a command's
execute() method.

The dynamic cache either stores the object's output to or serves the object's content from
the within the dynamic cache.
Because J2EE applications have high read-write ratios and can tolerate small degrees of
latency in the currency of their data, the dynamic cache can create significant gains in
server response time, throughput, and scalability.

Cache replication takes place using the WebSphere data replication service. Data is
generated one time and then copied or replicated to other servers in the cluster, saving
execution time and resources.
By default, when the number of cache entries reaches the configured limit for a given
WebSphere server, eviction of cache entries occurs, allowing new entries to enter the
cache service. The dynamic cache includes a disk offload feature that copies the evicted
cache entries to disk for potential future access.
The Web server plug-in contains a built-in Edge Side Include (ESI) processor.
The ESI processor caches whole pages, as well as fragments, providing a higher cache
hit ratio. The cache implemented by the ESI processor is an in-memory cache, not a disk
cache. Therefore, the cache entries are not saved when the Web server is restarted.
The dynamic cache controls caches outside of the application server, such as that
provided by the Edge components, an IBM HTTP Server's FRCA cache, and a
WebSphere HTTP Server plug-in ESI Fragment Processor. When external cache groups
are defined, the dynamic cache matches external cache entries with those groups and
pushes out cache entries and invalidations to those groups. This external caching allows
WebSphere to manage dynamic content beyond the application server. The content can
then be served from the external cache, instead of the application server, improving
performance.

SW5706G02_WASCompOverview.ppt Page 9 of 28

IBM Software Group

9

WebSphere Application Server components © 2007 IBM Corporation

Object Request Broker service
�An Object Request Broker (ORB) manages the interaction between EJB

clients and EJBs, using Internet Inter-ORB Protocol (IIOP).

�The ORB service enables clients to make requests and receive
responses from EJBs in a network-distributed environment.

�The ORB service provides a framework for clients to locate objects in the
network and call operations on those objects.

�The client-side ORB is responsible for creating an IIOP request that
contains the operation and any required parameters, and for sending the
request across the network.

�The server-side ORB receives the IIOP request, locates the target
object, invokes the requested operation, and returns the results to the
client.

An Object Request Broker (ORB) manages the interaction between clients and servers,
using Internet Inter-ORB Protocol (IIOP). The ORB service enables clients to make
requests and receive responses from servers in a network-distributed environment. The
ORB service provides a framework for clients to locate objects in the network and call
operations on those objects as though the remote objects were located in the same
running process as the client. The ORB service provides location transparency. The client
calls an operation on a local object, known as a stub. Then the stub forwards the request
to the desired remote object, where the operation is run, and the results are returned to
the client. The client-side ORB is responsible for creating an IIOP request that contains
the operation and any required parameters, and for sending the request in the network.
The server-side ORB receives the IIOP request, locates the target object, invokes the
requested operation, and returns the results to the client. The client-side ORB demarshals
the returned results and passes the result to the stub, which returns the result to the client
application, as though the operation had been run locally.
WebSphere Application Server uses an ORB to manage communication between client
applications and server applications as well as communication among product
components.

SW5706G02_WASCompOverview.ppt Page 10 of 28

IBM Software Group

10

WebSphere Application Server components © 2007 IBM Corporation

Administrative service
� The administrative service runs within each server JVM. In Base and Express,

the administrative service runs in the application server.

� In Network Deployment, each of the following hosts an administrative service:
�Deployment manager
�Node agents
�Application servers

� Provides the necessary functions to manipulate configuration data for the server
and its components.

� The configuration is stored in a repository in the server's file system.
�The repository consists of sub-directories which contain XML files of configuration

information

� The administrative service is invoked via JMX calls that go through Web
Services (SOAP/HTTP or RMI/IIOP)

The administrative service runs within each server JVM. In Base and Express, the
administrative service runs in the application server. In Network Deployment, the
Deployment manager, Node agent, and Application server each host an administrative
service. The administrative service provides the necessary functions to manipulate
configuration data for the server and its components. The configuration is stored in a
repository in the server's file system. The administrative service has a security control
and filtering functionality that provides different levels of administration to certain users or
groups using the following administrative roles: Administrator, Monitor, Configurator, and
Operator.

SW5706G02_WASCompOverview.ppt Page 11 of 28

IBM Software Group

11

WebSphere Application Server components © 2007 IBM Corporation

Name service
�Each application server hosts a name service that provides a Java
Naming and Directory Interface (JNDI) name space.

�Registers all EJB and J2EE resources that are hosted by the application
server including:
�JDBC providers

�JMS destinations
�JCA (J2C) components

�URL providers
�JavaMail providers

�The deployment manager and all node agents host a name service.

�Configured bindings can map resources to remote locations.

The Name Service is used to register resources hosted by the application server. The
JNDI implementation in WebSphere Application Server is built on top of a Common Object
Request Broker Architecture (CORBA) naming service (CosNaming).
JNDI provides the client-side access to naming and presents the programming model that
application developers use. CosNaming provides the server-side implementation and is
where the name space is stored. JNDI essentially provides a client-side wrapper of the
name space stored in CosNaming and interacts with the CosNaming server on behalf of
the client.
The naming architecture is used by clients of WebSphere applications to obtain
references to objects related to those applications. These objects are bound into a mostly
hierarchical structure, referred to as a name space. The name space structure consists of
a set of name bindings, each containing a name relative to a
specific context and the object bound with that name. The name space can be accessed
and manipulated through a name server.

SW5706G02_WASCompOverview.ppt Page 12 of 28

IBM Software Group

12

WebSphere Application Server components © 2007 IBM Corporation

Naming topology

Node 1 Node 2

JNDI Client

Deployment Manager

Name space

Node Agent

Name space

Name space

Application Server

Name space

Application Server

Name space

Application Server

Node Agent

Name space

9810 9811

2809

9809

9810

2809

Node 3

lookup

lookup
lookup

For additional scalability, the name space for a cell is distributed among the various
servers. The deployment manager, node agent, and application server processes each
host a name server.
The default initial context for a server is its server root. System artifacts, such as EJB
homes and resources, are bound to the server root of the server with which they are
associated.
The name space is partitioned into transient areas and persistent areas. Server roots are
transient. System-bound artifacts such as EJB homes and resources are bound under
server roots. There is a cell-persistent root that is used for cell-scoped persistent bindings
and a node-persistent root that is used to bind objects with a node scope.
A name space is a collection of all names bound to a particular name server. A name
space can contain naming context bindings to contexts located in other servers. If this is
the case, the name space is said to be a federated name space, because it is a collection
of name spaces from multiple servers. The name spaces link together to cooperatively
form a single logical name space. In a federated name space, the real location of each
context is transparent to client applications. Clients have no knowledge that multiple name
servers are handling resolution requests for a particular requested object.
In a Network Deployment distributed server configuration, the name space for the cell is
federated among the deployment manager, node agents, and application servers of the
cell. Each such server hosts a name server. All name servers provide the same logical
view of the cell name space, with the various server roots and persistent partitions of the
name space being interconnected by means of the single logical name space.
You can use the configuration graphical interface and script interfaces to configure
bindings in various root contexts within the name space. These bindings are read-only and
are bound by the system at server startup.
WebSphere Application Server also contains support for CORBA object URLs (corbaloc
and corbaname) as JNDI provider URLs and lookup names.

SW5706G02_WASCompOverview.ppt Page 13 of 28

IBM Software Group

13

WebSphere Application Server components © 2007 IBM Corporation

Data Replication Service

�The Data Replication Service (DRS) is responsible
for replicating in-memory data among WebSphere
processes. You can use DRS for:
�Stateful session EJB persistence and failover

�HTTP session persistence and failover
�Dynamic cache replication

�WebSphere Application Server offers two
topologies when setting up data replication among
servers:
�Peer-to-peer topology

�Client/server topology

Replication domains, consisting of server or cluster members that have a need to share
internal data, use the Data Replication Service to share their data. Multiple domains can
be used, each for a specific task among a set of servers or clusters. While HTTP session
replication and EJB state replication can (and should) share a domain, you need a
separate domain for dynamic cache replication. You can define a domain so that each
domain member has a single replicator that sends data to another domain member. You
can also define a domain so that each member has multiple replicators that send data to
multiple domain members.
WebSphere Application Server offers two topologies when setting up data replication
among servers, Peer to peer and Client server.
In Peer-to-peer, each application server stores sessions in its own memory and retrieves
sessions from other application servers. In other words, each application server acts as a
client by retrieving sessions from other application servers. Each application server also
acts as a server by providing sessions to other application servers. This mode, working in
conjunction with the workload manager, provides hot failover capabilities.
In Client Server, client application servers send session information to the replication
servers and retrieve sessions from the servers. They respond to user requests and store
only the sessions of the users with whom they interact. Application servers act as either a
replication client or a server. Those that act as replication servers store sessions in their
own memory and provide session information to clients. They are dedicated replication
servers that store sessions but do not respond to user requests.

SW5706G02_WASCompOverview.ppt Page 14 of 28

IBM Software Group

14

WebSphere Application Server components © 2007 IBM Corporation

J2EE Connector Architecture service (JCA)
� The JCA Connection Manager administers
� Connections obtained through resource adapters defined

by the JCA

� Data sources defined by the JDBC 2.0 Extensions

A
pp

lic
at

io
n

(s
er

vl
et

s,
 E

JB
s)

Relational Resource
Adapter

JCA
Connection

Manager

EIS or
Database

Connection
Pool

Connection
Pool

Data source

Connection

Factory
JD

B
C

 D
river

Connection management for access to enterprise information systems (EIS) in
WebSphere Application Server is based on the J2EE Connector Architecture (JCA)
specification, also sometimes referred to as J2C. The connection between the enterprise
application and the EIS is done through the use of EIS-provided resource adapters, which
are plugged into the application server. The architecture specifies the connection
management, transaction management, and security contracts that exist between the
application server and the EIS.

Within the application server, the Connection Manager pools and manages connections.
The Connection Manager administers connections that are obtained through both
resource adapters defined by the JCA specification and data sources defined by the JDBC
2.0 Extensions.

The JCA Connection Manager provides the connection pooling, local transaction, and
security supports. The relational resource adapter provides the JDBC wrappers and JCA
CCI implementation that allow applications using bean-managed persistence, JDBC calls,
and container-managed persistence beans to access the database JDBC Driver.

The JCA resource adapter is a system-level software driver supplied by EIS vendors or
other third-party vendors. It provides the connectivity between J2EE components (an
application server or an application client) and an EIS.

One resource adapter, the WebSphere Relational Resource Adapter, is predefined for
handling data access to relational databases. This resource adapter provides data access
through JDBC calls to access databases dynamically. It provides connection pooling, local
transaction, and security support. The WebSphere persistence manager uses this adapter
to access data for container-managed persistence beans.

SW5706G02_WASCompOverview.ppt Page 15 of 28

IBM Software Group

15

WebSphere Application Server components © 2007 IBM Corporation

Additional services
�Message listener service:
�Uses listener ports to support EJB 2.0 message-driven beans

�Performance Monitoring Infrastructure (PMI) service :
�Used to collect data on the server runtime components and application

components

�Security service:
�Each application server JVM hosts a security service.

�The security service uses the security settings held in the configuration
repository to provide authentication and authorization functionality.

�User registries containing authentication data can be configured using one of
the following:
� Local OS

� LDAP

� Custom user registry

EJB 2.1 uses an ActivitionSpec to connect message-driven beans to destinations.
However, you can deploy existing EJB 2.0 message-driven beans against a listener port
as in WebSphere Application Server V5. For those message-driven beans, the message
listener service provides a listener manager that controls and monitors one or more JMS
listeners. Each listener monitors a JMS destination on behalf of a deployed message-
driven bean.

The performance monitoring infrasturec is use by WebSphere Application Server to collect
data on runtime and applications. This infrastructure is compatible with and extends the
JSR-077 specification and is used by performance monitoring tools to provide realtime
information about the application server. PMI uses a client-server architecture. The server
collects performance data from various WebSphere Application Server components and
stores it in memory. This data consists of counters such as servlet response time and data
connection pool usage. The data can then be retrieved using a Web client, Java client, or
Java Management Extensions (JMX) client. WebSphere Application Server contains Tivoli
Performance Viewer, which is integrated into the WebSphere administrative console and
displays and monitors performance data. WebSphere Application Server also collects data
by timing requests as they travel through the product components. PMI request metrics
log the time spent in major components, such as Web containers, EJB containers, and
databases. These data points are recorded in logs and can be written to Application
Response Time agents that are used by Tivoli monitoring tools

SW5706G02_WASCompOverview.ppt Page 16 of 28

IBM Software Group

16

WebSphere Application Server components © 2007 IBM Corporation

Network deployment concepts

V6 Node

V6
Application

Server

V6
Application

Server
…

V6 Node

V6
Application

Server

V6
Application

Server
…

…

Cell

�A node is a logical grouping of
application servers.
�Each node is managed by a

single node agent process.

�Multiple nodes can exist on a
single machine through the use of
profiles.

�A deployment manager (DMgr)
process manages the node
agents.
�Holds the configuration

repository for the entire
management domain, called a
cell.

�Within a cell, the administrative
console runs inside the DMgr.

The Deployment Manager here is an application server that manages the administrative
environment within a cell. You will see later in this unit that a node is represented by a
profile. The node agent is a very important process that allows for communication of
administrative information (commands and configuration files) to reach the applications
servers.

SW5706G02_WASCompOverview.ppt Page 17 of 28

IBM Software Group

17

WebSphere Application Server components © 2007 IBM Corporation

Network deployment runtime flow

AppSrv03

AppSrv04

Node B

HTTP
Server
Plug-in

HTTP Server

Plug-in
Configuration

File

HTTP
Server
Plug-in

HTTP Server

Plug-in
Configuration

FileLoad Balancer

Browser

Java Client

RMI/IIOPHTTP(S)

HTTP(S)

HTTP(S)

AppSrv01

AppSrv02

Node A

HTTP(S) Application
DatabasesApplication

Data

JDBC

Deployment
Manager

The main theme with Network Deployment is distributed applications. While the “flow” of
an application remains the same, there are significant additions to the runtime of an
application. Note the “Load Balancer” this allows for multiple HTTP servers, users point
there browsers to the load balancer and their request will be work load managed to an
HTTP Server. Once the request hits one of these HTTP Servers, the HTTP Server Plug-
in will load balance the request between the application servers that it is configured to
serve. Once the request enters the application server, the flow is identical to how it was in
WebSphere Express and Base.

The Java clients requests to EJBs can also be work load managed so that the requests do
not all hit one application server.

SW5706G02_WASCompOverview.ppt Page 18 of 28

IBM Software Group

18

WebSphere Application Server components © 2007 IBM Corporation

Network deployment administration flowwsadmin
command-line client

Legend
:

Commands:

Configuration:

Cell cfg

Node A cfg

AppSrv01 cfg

AppSrv02 cfg

Node B cfg

AppSrv03 cfg

AppSrv04 cfg

MASTER

EAR

AppSrv04

AppSrv03 Node Agent

Admin
Services

Node B

Cell cfg

Node cfg

AppSrv03 cfg

AppSrv04 cfgEAR

AppSrv02

AppSrv01 Node Agent

Admin
Services

Node A

Cell cfg

Node cfg

AppSrv01 cfg

AppSrv02 cfgEAR

Deployment Mgr

Web Container

Admin App

Admin
Services

RMI/IIOP HTTP(S)

�Each managed
process, Node
Agent, Deployment
Manager starts with
it's own set of
configuration files.

�Deployment
Manager contains
the MASTER
configuration and
application files
�Any changes

made at node
agent or server
level are local
and will be
overridden by
the MASTER
configuration at
the next
synchronization
(update)

C:\> wsadmin

The administrative console and wsadmin are still the two ways that the environment is
administered. However, take note that these tools now talk to the Deployment Manager
and NOT to the application servers directly. The communication of these commands
flows from the tools to the Deployment Manager to the node agents, to the application
servers. This allows administration of multiple nodes (each possibly containing multiple
application servers) from a single focal point (the Deployment Manager).

There is ONE main repository for the configuration files within a cell, and those are
associated with the Deployment Manager. All updates to the configuration files should go
through the Deployment Manager. You will see in a moment how this process works.
You should be very careful in connecting to an application server directly with wsadmin or
the administrative console as any changes that are made to the configuration files are only
temporary, they will be overwritten with the configuration files from the MASTER files.

IBM Software Group

19

WebSphere Application Server components © 2007 IBM Corporation

File synchronization and file transferFile synchronization and file transfer
�Deployment Manager contains the
“master” configuration

�Node agents synchronize their files
with the “master” copy
�Automatically

�At start up

�Periodically

�Manually
�Administrative console

�Command line

�During synchronization
1. Node agent checks for changes to
master configuration

2. New or updated files are copied to
the node

AppSrv02

AppSrv01 Node Agent

Admin
Services

Node A

Cell cfg

Node cfg

AppSrv01 cfg

AppSrv02 cfgEAR

Deployment Mgr

Web Container

Admin App

Admin
Services

File Sync.
Service

File Sync.
Service

Cell cfg

Node A cfg

AppSrv01 cfg

AppSrv02 cfg

Node B cfg

AppSrv03 cfg

AppSrv04 cfg

MASTER

EAR

1
2

File synchronization service--the administrative service responsible for keeping up to date
the configuration and application data files that are distributed across the cell. The service
runs in the deployment manager and node agents, and ensures that changes made to the
master repository will be propagated out to the nodes, as necessary. The file transfer
system application is used for the synchronization process. File synchronization can be
forced from an administration client, or can be scheduled to happen automatically. During
the synchronization operation, the node agent checks with the deployment manager to
see if any files that apply to the node have been updated in the master repository. New or
updated files are sent to the node, while any deleted files are also deleted from the node.
Synchronization is one-way. The changes are sent from the deployment manager to the
node agent. No changes are sent from the node agent back to the deployment manager.

SW5706G02_WASCompOverview.ppt Page 20 of 28

IBM Software Group

20

WebSphere Application Server components © 2007 IBM Corporation

Web servers
� Web servers can be defined to the administration process as Web server nodes,

allowing applications to be associated with one or more defined Web servers.

� Web server nodes can be managed or unmanaged.

� Managed nodes have a node agent on the Web server machine that allows the
deployment manager to administer the Web server. You can
�Start or stop the Web server from the deployment manager
�Generate the Web server plug-in configuration file for the node
�Automatically push the file to the Web server

� Managed Web server nodes are usually behind the firewall with WebSphere
Application Server installations.

� Unmanaged Web server nodes, as the name implies, are not managed by
WebSphere.
�Normally found outside the firewall, or in the demilitarized zone.
�You must manually copy or FTP Web server plug-in configuration files to the Web

server.
�However, if you define the Web server as a node, you can generate custom plug-in

configuration files for it.

As a special case, if the unmanaged Web server is an IBM HTTP Server, you can
administer the Web server from the WebSphere

administrative console. Then, you can automatically push the plug-in configuration file to
the Web server with the deployment manager using

HTTP commands to the IBM HTTP Server administration process. This configuration does
not require a node agent.

SW5706G02_WASCompOverview.ppt Page 21 of 28

IBM Software Group

21

WebSphere Application Server components © 2007 IBM Corporation

Web server plug-ins

�Web containers can serve static content.
�But more likely an external Web server receives client requests

�Web servers usually serve requests that do not
require dynamic content such as HTML pages.

�When a request requires dynamic content, such as
JSP or servlet processing, it must be forwarded to the
application server.

�The Web server plug-in forwards a request based on
its URI.

�The Web server plug-in is also responsible for load-
balancing and failover among server cluster members
using plugin-cfg.xml files.

You use a Web server plug-in to foward requests from the Web Server to the Application
Server. The plugin is included with the WebSphere Application Server packages. You
copy an Extensible Markup Language (XML) configuration file, located on the

WebSphere Application Server, to the Web server plug-in directory. The plug-in uses the
configuration file to determine whether a request should be handled by the Web server or
an application server. When WebSphere Application Server

receives a request for an application server, it forwards the request to the appropriate
Web container in the application server. The plug-in can use HTTP or HTTPs to transmit
the request.

SW5706G02_WASCompOverview.ppt Page 22 of 28

IBM Software Group

22

WebSphere Application Server components © 2007 IBM Corporation

Web server: managed node (local)

�Install Web server on a Managed node

�Create a Web server definition within the DMgr

�Node Agent receives commands from DMgr to administer the Web server

�Plugin-cfg.xml file is propagated through the file synchronization service and lives under the config directory.

Manage
Start/Stop

V6
Node Agent

Web
Server

Plug-in
Config

XML file

Plug-in
Module

V6 Node

V6
Application

Server

V6
Node Agent

V6
Application

Server
…

V6
Deployment

Manager
Manages

S1

S3

S2

Managed
Web server
Definition

Managed node

Local plug-in
install

The web server is managed via the Deployment Manager through the Node Agent. This
provides ability to start and stop the Web server and automatically push the plug-in
configuration file to the web server from the DMgr. This can be used when the web server
is on the same machine where WebSphere Application Server is installed. This is a
common scenario for behind a firewall where a WebSphere Node can be installed.

SW5706G02_WASCompOverview.ppt Page 23 of 28

IBM Software Group

23

WebSphere Application Server components © 2007 IBM Corporation

Typical client request application flow (1 of 2)

This graphic outlines the typical client request as it flows from the browser, through the
application server, and then back to the client‘s browser. It is important to note that the
flow can diverge in the Web Container depending on what the servlet needs in order to
properly construct the response. If the request was for a simple JSP then the servlet can
dispatch the request directly to the JSP and return the output page. Otherwise, the
request will flow through the JNDI and to the appropriate EJB or datasources.

SW5706G02_WASCompOverview.ppt Page 24 of 28

IBM Software Group

24

WebSphere Application Server components © 2007 IBM Corporation

Edge components
�WebSphere Application Server Network Deployment package contains the
following Edge Component functionality:
�Load Balancer
�Caching Proxy

�Edge Components install separately from WebSphere Application Server.

�Load Balancer is responsible for balancing the load across multiple servers that
can be within either Local Area Network or Wide Area Network.

�The purpose of the Caching Proxy is to reduce network congestion within an
Enterprise by offloading security and content delivery from Web servers and
Application Servers.

Client Load
Balancer

Cluster of
Load

Balanced
ServersCaching

Proxy

The ND version of WebSphere Application Server contains functionality for two key edge
components, load balancers and caching proxies.

The Caching Proxy intercepts data requests from a client, retrieves the requested
information from the application servers, and delivers that content back to the client. It
stores cacheable content in a local cache before delivering it to the client. Subsequent
requests for the same content are served from the local cache, which is much faster and
reduces the network and application server load.

The Load Balancer provides horizontal scalability by dispatching HTTP requests among
several, identically configured Web server or application

server nodes.

SW5706G02_WASCompOverview.ppt Page 25 of 28

IBM Software Group

25

WebSphere Application Server components © 2007 IBM Corporation

Are all components in application flow
accessible?

IBM HTTP Server

Web Server Plug-
in

Use browser to access
http://localhost (if local)
or http://<ip_address>

(if remote)

Enable tracing in
http_plugin.log file

Application Server

Web
Container

Check SystemOut.log and
<server_name>.pid file . Verify there is a

java process with this PID

EJB
Container

Use browser to
access port 908x

Use Java client to
access EJBLoad Balancer

Ping the IP
address, ping the
cluster address

Client

Database
Use database

client with SQL to
check tables

Use ldapsearch
command to access

LDAP server
LDAP User

Registry

There are several components involved in hosting applications and so there are several
different points where you should investigate an application flow. This slide outlines some
of the ways in which you can verify that each of the components is on and operational. If
any one component does not pass this check, and is involved in the application flow, then
it is likely causing problems for users.

SW5706G02_WASCompOverview.ppt Page 26 of 28

IBM Software Group

26

WebSphere Application Server components © 2007 IBM Corporation

Unit summary
Having completed this unit, you should be able to:

� Describe stand-alone server architecture

� Describe Network Deployment Cell architecture

� List and describe the function of IBM products involved in implementing stand-
alone and distributed architectures

� Identify the components within the Application server and describe the services
they provide

� Identify the components of an ND Cell and describe the function of each

� Describe the different application server clients

� Describe the flow of an application request

� Describe the flow of administration requests

� Identify common troubleshooting points in the end-to-end flow of client request

This unit covered the key components of WebSphere Application Server as well as how it
interacts with other components involved in a user‘s request as it flows from browser to
application server and then back to the browser. Understanding this will not only help you
administer your WebSphere environment but be valuable to any problem determination
you may need to perform.

SW5706G02_WASCompOverview.ppt Page 27 of 28

IBM Software Group

27

WebSphere Application Server components © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject= Feedback about
SW5706G02_WASCompOverview.ppt

You can help improve the quality of IBM Education Assistant content by providing
feedback.

SW5706G02_WASCompOverview.ppt Page 28 of 28

IBM Software Group

WebSphere Application Server components © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

EJB, Enterprise JavaBeans, J2EE, Java, Java Naming and Directory Interface, JavaMail, JDBC, JMX, JSP, JVM, and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

