
Page 1 of 17

IBM Software Group

© 2007 IBM Corporation

SW5706
Introduction to JVM related Problems

4.0

This presentation will act as an introduction to JVM-related problems when using WebSphere
Application Server V6.

Page 2 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

2

JVM introduction

After completing this topic, you should be able to:

�Describe the components and functions provided
by the JVM

�Articulate at a high level, the common JVM
problems and how to begin problem determination

�Describe a javacore

�Collect and read javacores

After completing this topic, you should be able to describe the key components of the JVM,
identify common JVM problems, and produce and process javacore files.

Page 3 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

3

JVM overview (1 of 2)

The IBM Java Virtual Machine, or JVM, is the core component of the IBM Java Runtime
Environment, or JRE. The IBM JRE includes the JVM, the class libraries (including the IBM
Object Request Broker), and other files that provide the runtime support that is necessary for a
Java application stack. This figure shows the components of a typical Java Application Stack
and the IBM JRE.

Page 4 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

4

JVM overview (2 of 2)

The JVM is an interpretive computing engine that is responsible for running the bytecode in a
compiled Java program. The JVM translates the Java bytecodes into the native instructions of
the host machine. The application server, being a Java process, requires a JVM in order to run
and to support the Java applications that are running on it. JVM settings are part of an
application server configuration.

Page 5 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

5

JVM version

� WebSphere supports several JVMs based on platform
type
�Windows, AIX and Linux – IBM supplied
�Sun and HP – hybrid of IBM add-ons and vendor supplied JVM

� For a comprehensive list of the supported JVMs check
�http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.ht

ml

� To determine the JVM version in use
�Look in the SystemOut.log file of one of the profile instances

� <profile_home>/logs/server1/SystemOut.log

�Run java -fullversion from the command line
� <was_home>/java/bin/java –fullversion

C:\WebSphere\AppServer\java\bin>java –fullversion
java full version "J2RE 1.4.2 IBM Windows 32 build cn142sr1w-
20041028"

JVMs differ on the available tools supported and can have different behavior, even between
different versions targeted for the same platform. Always look at the documentation for the
specific JVM for behavioral descriptions and the options to control the JVM. To determine the
JVM version in use, look in the SystemOut.log file of one of the profile instances, or run “java –
fullversion” from the command line.

Page 6 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

6

Operating System

JVM
Native
Heap

JVM
Data
Segment

Operating System

JVM OS Interface

Typical JVM Architecture

Java
Heap

WAS Classes and Objects

Application classes and objects

JVM Runtime classes, extension
classes and objects

JVM
Data
Segment

JVM
Stack
Segment

JVM
Native
Code

interpreter, verifier, JIT
compiler, memory manager, etc

JVM memory segments

The JVM is a process whose memory layout depends on the OS platform. The diagram shown
here is a typical abstraction of process memory layout. As a process, the JVM itself needs
its own heap, the JVM native heap, from which it gets its own dynamic memory needs. A
portion of that heap is allocated for the Java heap where classes and objects are actually
stored. This is the heap that Java programmers are familiar with. Garbage collection occurs
only in the Java heap. The Java heap can grow and shrink. When there are enough
available memory in the JVM heap, the Java heap can be extended easily without acquiring
memory from the OS. Otherwise, a request for additional memory from the OS is made and
the JVM process size increases consequently.

Page 7 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

7

� JVM manages the Java heap and does garbage collection

� Object is eligible for GC when there are no more references
from root to that object

� Root set - References in the stack and registers

� Reference is dropped when variable goes out of scope

R o o t S e t J a va H ea p

K e y :

A c tive
o b je c t

D e a d
o b je c t

Understanding garbage collection (GC)

The active state of the JVM is made up of the set of stacks that represents the threads, the
statics that are inside Java classes, and the set of local and global JNI references. The garbage
collector, beginning at the this root set of references, scans the thread stacks and looks for
pointers that look like they are referencing Java objects. It is possible that there are attributes
(such as floats) being pushed onto the stack which may look like Java object references, so the
garbage collector treats these entries conservatively by marking them as “dosed” to make them
unmovable during compaction.

All the objects referenced by these pointers are reachable objects, so they will be listed in a
mark vector, which will then be used to compare with the allocbits vector. The allocbits vector
contains the information the garbage collector needs for all the objects created. The garbage
collector can determine what needs to be collected by looking at the differences between these
two vectors.

Page 8 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

8

IBM JDK GC process

� Mark: Recursively marks all the live objects, starting with
the registers and thread stacks.

�Parallel Mark and Sweep
� Use multiple threads (no. processors -1) to perform tasks

� Sweep: Frees all the objects that were not marked in the
mark phase.

� Compaction: Reduces heap fragmentation. This phase
attempts to move all live objects to one end of the heap,
freeing up large areas of contiguous free space at the
other end.

�Compaction stops JVM activity while it occurs

�Not every GC cycle results in a compaction

When the JVM cannot allocate an object from the current heap because of lack of space, a
memory allocation fault occurs, and the Garbage Collector is invoked. The first task of the
Garbage Collector is to collect all the garbage that is in the heap. This process starts when any
thread calls the Garbage Collector either indirectly as a result of allocation failure, or directly by a
specific call to System.gc(). The first step is to get all the locks that the garbage collection
process needs. This step ensures that other threads are not suspended while they are holding
critical locks. All the other threads are then suspended. Garbage collection can then begin. It
occurs in three phases: mark, sweep, and compaction. During the mark phase, the garbage
collector recursively marks all the live objects, starting at the root set. The sweep phase frees all
the objects that were not marked in the mark phase. Finally, compaction, attempts to move all
the live objects to one end of the heap. Because compaction can take a long time, the Garbage
Collector tries to avoid it if possible.

Page 9 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

9

JVM problem determination: high level
symptom analysis
� Application server stops responding

�Server crash
� Application server has terminated
� Tools available to determine the cause of crash

�Hung process
� Verify application server is still running
� Tools available to determine which process is hung

– Deadlocks
– Looping code logic

�Out of Memory condition
� Unexpected process exit
� Errors and exceptions logged without process exit

� Performance degradation

�Check to if the process ID is continually changing
� Indicates the application server is probably crashing and
being restarted.

A JVM may become unavailable or just perform poorly. An application server that does not
respond might be hung or the process might have ended. Users see hung applications or are not
able to access new applications. If cpu activity is low but the application server has not
terminated, you most likely have a hang or deadlock situation. If cpu activity is high and the
application server is using the cycles, you most likely have a loop or inefficient code.

An often encountered condition is out-of-memory (OOM), which manifests itself either as an
unexpected process exit with a "OutOfMemoryException“ or just a bunch of errors and
exceptions but no immediate process exit. This can occur when the application server is running
low on memory, perhaps due to an application issue such as a memory leak, a hardware
memory failure, or higher than usual demand.

Page 10 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

10

JVM problem determination: data to collect
� Process Dumps

�Complete dump of the virtual memory
�Can be quite large
�Not used for analysis but may be required by IBM support

� Javacores
�Also known as javadump or thread dump files
�Text file created by an application server during a failure

� Can also be triggered by sending specific signals

�Error condition will be given at top of dump
�Specific to the IBM JDK

� VerboseGC logs
�Provides detailed information on garbage collection cycles

� Heap Dump
�Shows the objects using the heap memory
�Needed for memory leak determination

A number of diagnostic documents may be generated to assist in your problem determination
efforts, including javacores, heap dumps and verbose garbage collection logs.

Page 11 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

11

Javacore overview

� What is a javacore
�Small diagnostic file that is produced by the JVM
�A text file that contains a lot of vital information about the running

JVM process
� javacore lists the JVM's command line, environments, loaded libraries
� provides a snapshot of all the running threads, their stack traces and the monitors (locks)

held by the threads.
� Can be a key in detecting hang/deadlock conditions.

� Also can be helpful in detecting performance problems
�Take a few (at least three) snapshots of the JVM (about 2-3

minutes apart)
�Analyze the javacore to see what different threads are doing in

each snapshot
�Example: a series of snapshots where container threads are in the

same method or waiting on same monitor/resource would be an
indication of a bottleneck, hang or a deadlock.

A javacore file is a snapshot of a running Java process. The IBM Java SDK produces a javacore
in response to specific operating system signals. Javacore files show the state of every thread in
the Java process and monitor information identifying Java synchronization locks.

You can use Javacore files to aid in resolving problems such as hangs or high cpu. A frequent
method of analysis is to take a series of 3 javacores, separated by 3 minutes, and then compare
the thread activity.

Page 12 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

12

Javacore location and naming

� The javacore file is stored in the first viable location of:
� The setting of the IBM_JAVACOREDIR environment variable

� <WAS_install_root>/profiles/<profile>
� TMPDIR or TEMP environment variable

� Windows only: If the javacore cannot be stored in any of the
above, it is put to STDERR.

� Javacore naming
� Windows and Linux:

javacore.YYYYMMDD.HHMMSS.PID.txtYYYY=year, MM=month,
DD=day, SS=second, PID=processID

� AIX: javacorePID.TIME.txtPID=processID, TIME=time since
1/1/1970

� z/OS: JAVADUMP.YYYYMMDD.HHMMSS.PID.txtYYYY=year,
MM=month, DD=day, SS=second, PID=processID

The location of the generated javacore file differs between platforms, but can be specified using
environmental variables. For detailed information check the IBM JDK Diagnostic Guide, which
explains in detail all the options for controlling javacores such as naming and location.

Page 13 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

13

Javacore contents
� Java version

� Java command line
�Command line that started Java process

� Current thread details
�Thread that is running when the signal is raised that causes the javacore to be

written

� JVM thread dump
�Current stack for every thread in the JVM

� Notable tags:
�1TIDATETIME

� Indicates the time and date of when the javacore file was produced.

�1TISIGINFO
� Contains the signal that caused the javacore.

�1XHSIGRECV
� Indicates the library that issued the operating system signal

Every javacore file has a line that indicates the time and date of when the javacore file was
produced and the fullversion of the JVM that produced the javacore.

Page 14 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

14

Javacore example (excerpt)

NULL --
0SECTION TITLE subcomponent dump routine
NULL ===============================
1TISIGINFO signal 11 received
1TIDATETIME Date: 2004/04/06 at 16:04:16
1TIFILENAME Javacore
filename: /export/home/was4/wasapps/appvmc01/vmclai mt1/workdir/ja
vacore499836.1081281856.txt
NULL --
0SECTION XHPI subcomponent dump routine
NULL ==============================
1XHTIME Tue Apr 6 16:04:16 2004
1XHSIGRECV SIGSEGV received at 0xd2782a88 in
/opt/WebSphere4/AppServer/java/jre/bin/libjitc.a. P rocessing
terminated.
1XHFULLVERSION J2RE 1.3.1 IBM AIX build ca131-20030 630
……..

This is an example of an excerpt from a javacore. In this case, the messages indicate a crash in
a JVM library and should be pursued with WebSphere Application Server Support.

Page 15 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

15

Verbose GC
� Verbose GC is an option provided by the JVM runtime

� Enables a garbage collection log
�Interval between collections
�Duration of collection
�Compaction required
�Memory size/memory freed/memory available

� Enable the verbose GC for the server using the administrative
console
�Servers�<serverName>�ProcessDefinition�Java Virtual Machine
�Select “Verbose Garbage Collection” checkbox
�Save and distribute
�Restart the server or servers

� Writes to native_stderr
�Varies depending on platform and WebSphere version
�Some overhead because of disk i/o, but often minimal unless thrashing

When the JVM cannot allocate an object from the current heap because of lack of space, a
memory allocation fault occurs, and the Garbage Collector is invoked. A good way to see what is
going on with garbage collection is to use verbosegc, which is enabled in WebSphere
Application Server using the administrative console. It is often recommended to have verbose
GC enabled permanently in production. The overhead cost on a reasonably well-tuned JVM is
actually quite small. The benefits of verbosegc the first time a problem happens are
considerable, while monitoring the verbose GC regularly is a simple way to monitor the health of
the system.

Page 16 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

16

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject= Feedback about
SW5706G14A_IntroToJVMProblems.ppt

You can help improve the quality of IBM Education Assistant content by providing feedback.

Page 17 of 17

IBM Software Group

© 2003 IBM Corporation
Introduction to JVM problems © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

AIX Current IBM WebSphere z/OS

Windows, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, JDK, JVM, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

