
Page 1 of 22

IBM Software Group

© 2007 IBM Corporation

SW5706
Troubleshooting hangs

4.0

This presentation will act as an introduction to troubleshooting hangs when using WebSphere® Application Server V6.

Page 2 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

2

Application server hangs

After completing this topic, you should be able to:

�Describe what a hang is

�Detect a hang condition

�Analyze javacore for hung threads

The first section of this unit will concentrate on describing and detecting hang conditions in WebSphere Application Server V6.

Page 3 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

3

Application server hang defined

� Clarify the nature and extent of the hang

�A “hang” is not the same as a “crash”

�Is entire process is truly hung, or does it still respond to
some requests?
� Test with sample “Snoop” servlet, wsadmin commands, and so on.

�Deadlocks:
� Very often, one process fails to respond to a request because it has

made a call to another process that is itself hung; sometimes is hard to
find the true culprit.

� Deadlocks also may occur within the same Java process, where one
thread is deadlocked on another.

A hang can be defined as a process or thread which has become unresponsive while still apparently alive. Contrast this with a
crash, when a process abnormally ends, hopefully with an error message. Resources normally available may be tied up by
unbounded code paths, such as when the code is running in an infinite loop. Alternately, a system can become unresponsive
even though all resources are idle, as in a deadlock scenario. Other applications and functions in the same JVM may still work.
The problem may be contained entirely within one process, or it may involve multiple processes, as when many threads in the
server are waiting for some response from the database. You may need to look at the other remote processes to fully
understand what's going on in that case.

Page 4 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

4

� Understand root causes
�Customer code enters an infinite loop such as:

�Customer code waits infinitely such as:

�Customer code creates a deadlock such as:

Thread hang examples

while (true) {
i++;

}

run() {
object1.wait();

}

synchronized (object1) {
synchronized (object2) {
// Work with objects

}
}

synchronized (object2) {
synchronized (object1) {
// Work with objects

}
}

Thread hangs can arise in a number of scenarios, including when the application code enters an indefinite loop, waits
indefinitely, or creates a deadlock or “deadly embrace”. Detecting if a thread is hung or just taking a long time to respond is a
difficult problem to solve correctly. There are tools available and WebSphere has a built-in monitor to assist in identifying hung
threads. These tools and the monitor will be discussed further in the unit. Using these facilities, it can be a simple process to
identify when threads are hung.

Page 5 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

5

WebSphere process hang detection steps

� Obtain a thread dump or javacore
�If the process is still responsive to JMX commands, then wsadmin or

the Thread Analyzer should be able to trigger the dump
�Otherwise, may need to trigger through lower-level OS functions

� On UNIX®, send a “kill -3” signal
� On z/OS®, from console enter “F <servername>,JAVACORE”
� If that fails, may need even lower-level functions (such as dbxtrace)

� For a typical hang, collect three dumps at a few minutes
interval
�To see if anything is moving within the process (but slowly)

� Examine the thread dumps with Thread Analyzer or by hand
�Look for deadlocks
�Look for threads that are waiting after sending a request to some

other process, now awaiting a response

The basic problem determination method for hangs is to obtain one or, if possible, a series of thread dumps. If the process is
still responsive to JMX™ commands, then the Thread Analyzer or a wsadmin command should be able to trigger the dump.
Otherwise, depending upon your operating system, certain signals will trigger a thread dump. For a typical hang, collect three
dumps at 5 minute intervals to determine if anything is moving within the process (albeit slowly). Examine the thread dumps
with Thread Analyzer or by hand to look for deadlocks or to see if threads are awaiting responses from other processes. In
newer JVMs, the javacore or thread dump will automatically perform deadlock detection and tell you if a deadlock has been
detected. Look for the string "deadlock" in the javacore file.

Page 6 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

6

Javacore hang indicators

� JVM monitor information
�Shows synchronization locks

�Indicates blocked threads

�Active threads
�Look for running threads indicated by
� state:R
� Example:

"Servlet.Engine.Transports:239" (TID:0x34B94018, sys_thread_t:0x7CD4E008, state:R , native ID:0x10506) prio=5
at
java.net.SocketInputStream.socketRead(Native Method)
at
java.net.SocketInputStream.read(SocketInputStream.java(Compiled Code))
at
com.ibm.ws.io.Stream.read(Stream.java(Compiled Code))
at

com.ibm.ws.io.ReadStream.readBuffer(ReadStream.java(Compiled Code))

The monitor information in the javacore file shows what synchronization locks are held by which threads. It also shows which threads are blocked by
monitors. This information is useful for determining the cause of a deadlocked or hung JVM. The monitor information is in a section entitled LK
subcomponent dump routine. It is before the thread dump of all the threads of the JVM. A large number of threads blocked on a monitor does not mean a
deadlock has occurred. It might mean that there is a monitor (synchronization lock) that is causing a backlog of work to be completed. The javacore
processing dumps the current stack for every thread in the JVM. It shows the current state of the thread and produces a stack trace.
The thread state indicates if the thread is currently runnable or not. If the thread state is state:R, the thread is runnable. The thread state CW, for
Conditioned Wait, indicates a thread that is in a wait state. The call stack under the thread header is the Java stack. This shows the Java calls that have
been made to get the thread to its current state. The first line in the Java stack is the last Java method call that was made. It was from that location that a
call into a native method might have been made. That is typically identified with the phrase Native Method showing the location in the Java program that
was called. The native stack shows what native methods or procedures were called after the thread entered the native code. The first line in the native
stack shows what the thread was doing in native code when the javacore was taken.

Page 7 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

7

Javacore hang symptoms

�Check to see if threads are blocked waiting on
monitors

�May indicate deadlock

� If threads are in running state

�Check method across multiple javacores

�If individual threads in same method
� may indicate looping logic

� If threads are in wait states

�May indicate that a resource is causing hang

Threads which are blocked waiting on monitors may indicate a deadlock. Similarly, threads which are in wait states may
indicate a resource causing a hand. If the threads are in a running state, observe their behavior over multiple javacores. If the
individual threads are in the same method, it may indicate a loop.

Javacores contain a lot of information and may cover dozens of threads. It is recommeded that tools be used to process the
javacore such as the

Thread Analyzer and the Thread Monitor. These tools will be covered in more details in the following sections.

Page 8 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

8

Hung thread detection

After completing this topic, you should be able to:

�Describe the features of the thread monitor
for hang detection.

�Know how to configure and view the output from
the WebSphere hang thread detection facility

The first section of this unit will concentrate on the usage and features of the Thread Monitor in WebSphere Application Server
V6.

Page 9 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

9

� WebSphere contains a built-in hung thread detection
function

� ThreadMonitor architecture was created to monitor thread
pools within WebSphere
� The ThreadMonitor monitors Web Container, ORB, and Async Bean

thread pools

� Enabled by default

� Unmanaged threads, which are threads created by
applications, are not monitored.

� Upon notification of a hung thread:
� Obtain a javacore and see what the thread is doing

� Investigate the nature of the thread

WebSphere hung thread detection

WebSphere Application Server V6 contains a built-in hung thread detection function. It monitors the web container, ORB, and
Async Bean thread pools, and is enabled by default. Note that unmanaged threads are not monitored. You can configure a
hang detection policy to accommodate your applications and environment so that potential hangs can be reported, providing
earlier detection of failing servers. When a hung thread is detected, WebSphere Application Server notifies you so that you can
troubleshoot the problem. When notified, you should obtain a javacore to investigate the nature of the thread and to determine
if the behavior is normal.

Page 10 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

10

� When the thread pool gives work to a thread, it
notifies the thread monitor

�Thread monitor notes thread ID and timestamp

� Thread monitor compares active threads to
timestamps

�Threads active longer than the time limit are marked
“potentially hung”

� Performance impact is minimal (< 1%)

Hung thread detection internals

When the thread pool issues work to a thread, it sends a notification to the thread monitor, which notes the thread ID and the
time in a list. At user-configurable intervals, the thread monitor looks at the active threads, and compares them to the list, to
determine how long each thread has been active. If a thread has been active longer than the user-specified threshold, the
thread is marked as “potentially hung”, and the notifications are sent.

Page 11 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

11

� No action taken to kill the thread--only a
notification mechanism

� When a thread is suspected to be hung,
notification is sent three ways:

�JMX notification for JMX listeners

�ThreadPool metric for PMI clients
� Counters are updated

�Message written to SystemOut.log:
[4/17/04 11:51:30:243 EST] 2d757854 ThreadMonitor W WSVR0605W: Thread
Servlet.Engine.Transports : 0 has been active for 14,198 milliseconds
and may be hung. There are 1 threads in total in the server that may be
hung.

Hung thread detection notification

The thread monitor doesn’t try to deal with the hung threads, it just issues notifications, so that the administrator or developer
can deal with the issues. When a hung thread is detected, three notifications are sent: a JMX notification for JMX listeners, PMI
Thread Pool data is updated for tools like the Tivoli Performance Viewer, and a message is written to the SystemOut log. The
JMX notification enables vendor tools to catch the event and take appropriate action, such as triggering a JVM thread dump of
the server, or issuing an electronic page or e-mail. The message written to the SystemOut log has a message ID of
WSVR0605W, and shows the thread name, the approximate time that the thread has been active, and the total number of
threads which may be hung.

Page 12 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

12

� What about false alarms?
� For example: a thread that takes several minutes to complete

a long-running query

� If a thread previously reported to be hung
completes its work, a notification is sent:
[2/17/04 11:51:47:210 EST] 76e0b856 ThreadMonitor W
WSVR0606W: Thread Servlet.Engine.Transports : 0 was
previously reported to be hung but has completed. It
was active for approximately 31,166 milliseconds.
There are 0 threads in total in the server that still
may be hung.

� The monitor has a self-adjusting system to
make a best effort to deal with false alarms.

Hung thread detection false alarms

It’s possible that a thread could actually be running for longer than the specified threshold for legitimate reasons. For example,
a thread could be executing a large database query that takes several minutes to return.

The thread monitor is built to recognize false alarms and adjust itself automatically. When a thread that was previously marked
as “potentially hung” completes its work and exits, a notification is sent. After a certain number of false alarms, the threshold is
automatically increased by 50% to account for these long-running threads. The idea is that if there are several threads that are
routinely active for 20 minutes, the threshold will eventually adjust itself to be higher than 20 minutes, so as to not mark those
threads as hung.

Page 13 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

13

� To configure access: Servers > Application
Servers > server_name > Administration >
Custom Properties

� Create custom properties on the application
server:

DescriptionDefaultUnitsProperty

the number of false alarms that can
occur before automatically increasing
the threshold by 50%.

100N/Acom.ibm.websphere.threadmonitor.false.alar
m.threshold

the length of time that a thread can be
active before being marked as
“potentially hung”

600secs.com.ibm.websphere.threadmonitor.threshold

interval at which the thread pools will
be polled for hung threads

180secs.com.ibm.websphere.threadmonitor.interval

Hung thread detection configuration

The hang detection policy can be configured by creating custom properties for the application server.

* com.ibm.threadmonitor.interval is the interval at which the thread pools will be polled for hung threads (in seconds). It defaults to 180 seconds, which is
3 minutes.

* com.ibm.websphere.threadmonitor.threshold is the length of time that a thread can be active before being marked as “potentially hung”. The default
value is ten minutes.

* com.ibm.websphere.threadmonitor.false.alarm.threshold is the number of false alarms that can occur before automatically increasing the threshold by
50%. The default value is 100. Automatic adjustment can be disabled altogether by setting this property to zero. The application server must be restarted
for these changes to take effect. To adjust the hang detection policy on the fly, use wsadmin. Refer to the Information Center for instructions.

To disable the hang detection option, set the com.ibm.websphere.threadmonitor.interval property to less than or equal to zero.

Page 14 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

14

Thread Analyzer

After completing this topic, you should be able to:

�Describe Thread Analyzer’s features and interface

�Describe Thread Analyzer’s uses in problem
determination

The final section of this unit will concentrate on the features and usage of the Thread Analyzer tool.

Page 15 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

15

WebSphere Thread Analyzer

� A Stand-alone GUI tool to analyze the Javacore file
produced by the JVM

� Helps non-Javacore/WebSphere experts analyze the
Javacore

� Gathers and analyzes thread dumps from a WebSphere
Application Server

� Thread dumps are important for several common problem
areas:

� Application Server crashes
� Application Server hangs – for example, deadlocks
� Performance bottlenecks – for example, many threads in

contention

� Can detect some deadlock conditions and provides
recommendations based on analysis

The analysis of thread dumps or javacore files is an important skill in problem determination in the event of server crashes,
hangs, or performance bottlenecks.

The Thread Analyzer is a stand-alone gui tool used to help gather and analyze thread dump files produced by WebSphere
Application Server. Thread Analyzer can obtain a thread dump or open an existing thread dump. Thread usage can be analyzed
at several different levels, starting with a high-level graphical view, and drilling down to a detailed tally of individual threads. If
any deadlocks exist within the thread dump, Thread Analyzer will detect and report them. The Thread Analyzer is available as
a tool plug-in for the IBM Support Assistant (ISA).

Page 16 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

16

Thread Analyzer functions
� Analysis section

� Breakdown of where current threads are executing in JVM

� Use to determine where investigation into thread dump should start

� Overall Monitor Analysis section
� Provides analysis of monitors within JVM

� Use to determine if deadlocks are to blame for problem
� Shows classic deadlocks and single-threaded waiters that exist during your

application’s execution

� Overall Thread Analysis section
� Provides top of stack (TOS) analysis for threads in JVM

� Use to determine areas of high contention in your application
� Look for methods that are being executed by majority of threads in JVM

� Remaining sections offer similar information but break it down by
container and offer advice in just those areas

� Advice specifically for Web container and ORB service

The Thread Analyzer tool contains several sections to aid you in your problem determination. The Summary and Analysis
pages provides a textual and graphical breakdown of where current threads are executing in the JVM. Use this page to help
guide your investigation. The Overall Monitor Analysis section provides an overview of the existing monitors in the JVM. This
information will show classic deadlocks and single-threaded waiters that exist at the time of the thread dump. The Overall
Thread Analysis section provides a top of stack analysis for threads in the JVM. Use this information to determine areas of high
contention in your application.

Page 17 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

17

Thread Analyzer: summary

The Summary view displays the breakdown of where threads are executing in the JVM. It also provides a quick point of
reference to determine if there are any deadlocks present in the thread dump. The Project panel on the left displays the
analysis outline for the thread dumps in the current project. This panel is common to all views. From this panel you can select
any of the different analytic views for the thread dump.

Page 18 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

18

Thread Analyzer: overall thread analysis

The Overall thread analysis view displays all of the methods that were being executed and the number of threads that were
executing them. You can also look at the raw text data as well by flipping to the Text tab. The bottom-center panel displays the
details from selecting the com.bim.ejs.cm.pool.ConnectionPool.waitForVictimCon nection method in the panel above. The
panel displays the exact threads that were executing the method at the time of the thread dump.

The bottom-right panel displays information for the selected thread. A thread can be in a state of Runnable or Condition Wait.
Runnable, or R, means that the thread is able to run when given the chance. Condition Wait, or CW, means that the thread is
waiting, perhaps because a sleep() call has been made, or the thread has been blocked for i/o.

Page 19 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

19

Thread Analyzer: overall monitor analysis
� Classic deadlock analysis

� Single-threaded waiter analysis

The Overall monitor analysis section displays details on any deadlocks present in the thread dump. The first part of the
analysis has information pertaining to classic deadlocks, where as the second part of the analysis has information pertaining to
single-threaded waiters.

Page 20 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

20

Example output: servlet thread analysis

Servlet engine thread analysis

COM.ibm.db2.jdbc.app.DB2PreparedStatement.SQLExecute

seems to be currently executing on 40 servlet threads.

Since 78% (40 out of 51) of the threads doing servlet work seem to be

executing this method, it would seem that there

is some possibility that this method and its call path

may warrant investigation.

Servlets affected:

trade_client.TradeScenarioServlet [40 occurrences]

Callers (servlet threads only):

trade.TradeBean.getBalance [1]

trade.TradeBean.buy [1]

COM.ibm.db2.jdbc.app.DB2PreparedStatement.executeQuery [11]

COM.ibm.db2.jdbc.app.DB2PreparedStatement.executeUpdate [11]

trade.EJSJDBCPersisterCMPAccountBean._create [2]

trade.EJSJDBCPersisterCMPHoldingBean.findByUserID [2]

trade.EJSJDBCPersisterCMPQuoteBean.load [1]

trade.EJSJDBCPersisterCMPProfileBean.load [2]

trade.EJSRemoteStatelessTrade.login [2]

trade.EJSJDBCPersisterCMPRegistryBean.store [2]

trade.EJSJDBCPersisterCMPAccountBean.load [1]

The circled text above is an example of the type of recommendation that you’ll receive from Thread Analyzer. The message
shows how the tool tries to point you in the initial direction of a problem area. In the above example, the tool has identified an
SQLExecute method which is executing on a number of threads, and therefore may warrant further investigation.

Page 21 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

21

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject= Feedback about
SW5706G15_Hangs.ppt

You can help improve the quality of IBM Education Assistant content by providing feedback.

Page 22 of 22

IBM Software Group

© 2003 IBM Corporation
Troubleshooting hangs © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere z/OS

Java, JMX, JVM, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

