IBM Software Group

WebSphere Application Server V6.1
Problem determination guide

Connection pool tuning and management
problems

(@ business on demand.

© 2009 I1BM Corporation
Converted to video May 18, 2015

This unit describes how to troubleshoot connection pool tuning and management problems
in WebSphere® Application Server.

WA5716G11_ConnectionPool.ppt

Page 1 of 33

IBM Software Group EH

Unit objectives

After completing this unit, you should be able to:
= [dentify connection pool problems

= Describe what to look for in the WebSphere
Application Server logs

= Enable tracing for connection manager
components

= Interpret and analyze the trace data

= Describe the diagnostic provider Mbeans and
utility

Connection pool tuning and management problems © 2009 IBM Corporation

After you complete this section, you will be able to identify problems in connection pools,
know how to use Tivoli® Performance Viewer, to monitor a connection pool, understand

connection pool tracing data, and perform the problem determination tasks to troubleshoot
a connection pool problem.

WA5716G11_ConnectionPool.ppt Page 2 of 33

IBM Software Group BH

What is connection pooling?

= Application server maintains a pool of ready-to-use connections
to a data store

= Application client requests a connection using a data source or
connection factory object

= Connection is retrieved from pool
* Benefits:
» Minimizes database session setup and tear-down

» Improves application database access performance
» Spreads out connection cost over repeated uses

Data source

A i or
Application client f¢e—- Cogtr):%ccttlon <«—— Connection
factory

Database

[1]]]

Connection
pool

Connection pool tuning and management problems

© 2009 IBM Corporation
Applications need to acquire a connection to a data store each time they want to retrieve
information from the store. The average connection object is one to two megabytes in size
and contains a great deal of information about the connection context. Creating and
terminating those connections is actually a very time consuming operation and so it can
easily slow down the application. To fix this problem, WebSphere Application Server uses
a pool of connections that can be reused by applications. This allows the cost of
establishing each connection to be spread out across several requests and can
significantly improve performance. An application that needs to access the data store will

request a connection from the pool and return the connection when it is finished. An
example of this work flow is illustrated on the slide.

WA5716G11_ConnectionPool.ppt Page 3 of 33

IBM Software Group BH

= WebSphere Application Server
implements the Java EE
Connector Architecture (JCA)
V1.5 specification

= Connection pooling is
supported by two components:

» JCA connection manager
(called J2C connection pool
manager in WebSphere)

» Relational resource adapter

JCA connection pooling architecture

Resource
Adapter

.................................... T e ey

Application

Datasource
A -

Delegate

JCA
Connection
Manager

DB Con_n%

JOBC Driver

DB Server

tions

Pool

QO

Connection pool tuning and management problems

© 2009 IBM Corporation

WebSphere Application Sever implements connection pooling by following the Java™ EE
Connection Architecture version 1.5 specification. There are several objects involved in
pooling connections but they can be grouped into two basic components, the JCA
connection manager and the Relational Resource Adapter. An application that needs a
database connection will go to the Resource Adapter to retrieve a Connection Factory. The
Connection Factory will delegate the request to the correct Connection Manager. The
Connection Manager is responsible for either returning an existing connection from the
pool of available connections or creating a new one if none are available. The application
releases the connection when it is finished interacting with the database and the

Connection Pool will return it to the pool.

WA5716G11_ConnectionPool.ppt

Page 4 of 33

IBM Software Group mH

Types of connection pools in WebSphere

= JDBC connection pool
» Enables access to a relational database

= JMS connection pool

» Enables access to the data store used by the default
messaging engine or a WebSphere MQ provider

= EIS Connection pool

» Enables access to enterprise information systems such
as CICS®, legacy databases such as IMS™ and other
back-end systems

= All are managed by the WebSphere J2C
connection pool manager

& - S
Connection pool tuning and management problems © 2009 IBM Corporation

WebSphere Application Server uses a J2C connection pool manager to maintain three
different connection pools. The JDBC connection pool is used to manage connections to
relational databases such as DB2®. This pool can be adjusted by navigating to the JDBC
Providers panel of the WebSphere administrative console. There is also a JMS pool for
managing requests for connections to Service Integration Bus messaging engines or
WebSphere MQ Queue Managers. This pool is maintained in the JMS Providers panel of
the WebSphere administrative console. Finally, WebSphere provides an EIS connection
pool that manages connections to CICS and legacy back-end

systems such as IMS. This connection pool is controlled through the WebSphere
administrative console un the Resource Adapters panel.

WA5716G11_ConnectionPool.ppt Page 5 of 33

IBM Software Group m

Sharable versus unshareable connections

= Shared connections

» Single connection used by multiple getConnection calls within a same
transactional context or container boundary

» The connection is not released back to the pool even when closed
» Connection is released when transaction or parent method completes
» Default behavior — often more scalable

» Unshared connections

» Each getConnection calls results in a connection being allocated from
the connection pool

» Connection is released back to the pool upon a close call
» Multiple connections can be used within the same transaction

= Common issues

» Shared connections may be held too long exhausting the pool and
appearing as though a connection leak is present

» Unshared connections may exhaust the pool as many may be used
for each transaction

Connection pool tunina and management problems

Connection pooling in WebSphere Application Server is managed according to the Java
Connector Architecture (JCA) and enables the use of shareable or unshareable
connections. In WebSphere Application Server, connections are shareable by default. The
use of shareable connections means that, if conditions allow it, different requests for
connections by the application may actually receive a handle for the same physical
connection to the resource. The benefits of this are improved performance and a reduction
in the number of physical connections that need to be managed. When the application
closes a shareable connection it is not returned to the free pool. Rather, it remains ready
for another request within the same transaction for a connection to the same resource.
Shareable connections obtained by an application within a local transaction containment
are kept reserved in the shared pool for use within that local transaction containment until
the it ends, even if the application explicitly closes the connection. This behavior is
beneficial to many applications, but can have unintended consequences for others.

WA5716G11_ConnectionPool.ppt Page 6 of 33

‘ |BM Software Group

DSRA or CWWRA

IEN

Detecting connection management related problems

JCA resource adapter

CONM or CWWCM

WebSphere Version four connection manager
Legacy connection manager used to support Java EE 1.2
applications

J2CA or CWWJC

Java EE connector (J2C Connection pool manager)
Most recent JCA 1.5 compliant connection manager

WSCL or CWWSC

WebSphere client (Java EE application client manager)

WTRN or CWWTR

WebSphere transaction manager

SQLException or database error code

Database manager

Connection pool tuning and management problems

© 2009 IBM Corporation

Connection related log messages are sent to the SystemOut and SystemErr logs in the
appropriates profiles log directory. The System logs are the best starting place to
determine if you have a problem in one of the connection pools. WebSphere Application
Server maintains connection pools for multiple connection types so it stands to reason that
there are several different messages that pertain to the different connection types. The
various connection based prefixes are listed on this slide along with the connection types
that they pertain to. The best way to determine if you are experiencing connection
problems is to search the logs for any of the message prefixes then correlate them to the

appropriate message source.

WA5716G11_ConnectionPool.ppt

Page 7 of 33

IBM Software Group mH

Typical connection pool runtime problem symptoms

= Sporadic failure to connect to an existing data source or connection
factory:
» Application has been working and connecting to an existing data
source or connection factory
» You start to experience poor user response time and see intermittent
failures in getting a connection
= Examine the WebSphere logs for exceptions:
» No specific exception
= Probable cause: Improperly tuned connection pool settings
» ConnectionWaitTimeoutException
= Probable cause 1: Improperly tuned connection pool settings
= Probable cause 2: Connection leak due to poor coding
» StaleConnectionException
= Probable cause: Stale connection

Most people find out they are experiencing a connection pool problem by noticing
symptoms in their application‘s behavior instead of noticing events in the SystemOut and
SystemErr logs. There is typically a problem with a connection pool when an application
experiences sporadic failures when trying to connect to a data source. This means the
application was able to connect to the data source and work normally but then started to
see intermittent failures or a increase in user response time. In either case, the next step
is to check the log files to help narrow down the possible cause for the sporadic behavior.
There are several possible outcomes from checking the log files. One outcome is that you
do not find connection exceptions. In this case, the problem is likely due to something
other than the connection pool. Another outcome is you find
ConnectionWaitTimeoutException message in the log files then there are two probable
causes. You either need to change the connection pool settings or there is a connection
leak somewhere in the system.

Finally, if you find StaleConnectionException in the log then, as the exception indicates,
there is probably a problem with connections going stale.

WA5716G11_ConnectionPool.ppt Page 8 of 33

| IBM Software Group Eg

Connection pooling problem determination path

v

Review
WebSphere logs

v

Yes _-StaleConnectio No
Exception?

Troubleshoot
Tr°”c'2,'ﬁrﬁ‘2&?fms"a‘e connection pool
problem configuration
problem

Troubleshoot
connection leak

Connection pool tuning and management problems © 2009 IBM Corporation

If it helps, you can think of troubleshooting a connection pool problem in terms of a
decision tree. The tree starts with the assumption that you are seeing sporadic behavior
from your application or you have another reason to believe there is a problem in the
connection pool. From there, you review the logs and look for Stale Connection
Exceptions. If you find any the next step is to begin troubleshooting a stale connection
problem. Otherwise, it is best to review the connection pool configuration and make sure it
is not causing the problem. If the configuration checks out then you should begin
troubleshooting a possible connection leak in the connection pool.

From here, you will take a detailed look at each of the three troubleshooting steps.

WA5716G11_ConnectionPool.ppt Page 9 of 33

‘ |BM Software Group Eg

Troubleshooting connection pool configuration in the
problem determination path

Neboohers

Yes __8faleConnection, No
xceptiol —— i |
I 1
Troubleshoot stale | SReEHE |
conngcton | | configuration | |
problem | problem 1
[R

Troubleshoot
connection leak
problem

Connection pool tuning and management problems © 2009 IBM Corporation

In the case where the symptom for a connection pool problem is not accompanied by a
StaleConnectionException in the WebSphere logs, start your problem determination effort
by looking at the connection pool configuration to rule out any performance tuning issues.

WA5716G11_ConnectionPool.ppt Page 10 of 33

IBM Software Group m

The need for connection pool tuning

= Keeping connections in a pool consumes resources
» Connections are large objects (1-2 MB each)

» An improperly tuned connection pool can result in:

» Poor user response if the client is consistently waiting for a free
connection

» Application exceptions if the client cannot get a connection within the
specified wait timeout interval

» Reduced server throughput if unused connections are wasting system
resources

= Connection pools need to be properly tuned to ensure
optimal performance:

» Maximize the chances that connections are available when needed
» Minimize the number of idle connections
» Minimize the number of orphaned connections

Connection pool tunina and management problems © 2009 IBM Corporation

Connection pools allow you to set a range for the number of connections that will
maintained by WebSphere Application Server. It is important to get the tuning parameters
right otherwise you might cause problems for the application. Setting the pool size too
small can slow down the application because it will have constantly wait for free
connections. Setting it too large will waste resources and possibly impact the server's
throughput. In general, you want to try and tune a connection pool to achieve three goals.
First, you want to maximize the chance that connections are available when needed. This
means setting the connection pool size so that it is big enough to have free connections
when they are needed. Second, you want to minimize the number of idle connections
because connections that are not being used are overhead that reduces the server's
throughput. Finally, you want to set the connection timeout so that it minimizes the number
of orphaned connections but does not interfere with connections that are operating
normally.

WA5716G11_ConnectionPool.ppt Page 11 of 33

IBM Software Group mH

Key connection pool parameters

* Maximum connections

» Specifies the maximum number of connections that can be created in
the pool

» Default value is 10
» A value of 0 allows the number of physical connections to grow
infinitely and causes the Connection timeout value to be ignored
= Connection timeout

» Specifies the interval, in seconds, after which a connection request
times out and a ConnectionWaitTimeoutException is thrown.

» Default value is 180 seconds (three minutes)

» A value of 0 instructs the pool manager to wait as long as necessary
until a connection becomes available

There are a few of the connection pool parameters that play a significant role in achieving
the goal of an optimized connection pool. The first of these parameters is the maximum
connections count. This value governs the maximum size of the connection pool. If the
pool has already reached the maximum size it will not allow a new connection to be
created and will instead force a request to wait for an existing connection to free up.
However, you can set the maximum value to O and allow the pool to grow without
constraint. This will also cause the Connection Timeout value to be ignored. The
connection timeout is how long a connection request will wait for a free connection before
it quits and creates a ConnectionWaitTimeoutException. You can also disable the
connection timeout by setting it to 0 and allowing a request to wait as long as it takes to
receive a connection. Setting the connection pool to 0 in and allowing unconstrained
growth can be a bad idea. Resources should be load tested in order to find the best value
and should always be bounded. Failure to do so can lead to memory exhaustion and
worse, overloading the resources that are being connected to.

WA5716G11_ConnectionPool.ppt Page 12 of 33

IBM Software Group EH

console

Data sources
Data sources > PLANTSDE > Connection pools

g
ance of your application. Consid
warrant changing these values.

Connection pool parameters in the administrative

Use this page to set properties that impact the timing of connection management tasks, vhich can affect the
P er the default valus fully; your

10 connections
Minimum connections

1 connections
Reap time

180 seconds
Unused timeout

1800 seconds

Connection pool tuning and management problems

© 2009 IBM Corporation

There are several other connection pool properties that can be configured in the
WebSphere administrative console. Minimum Connections, for example, specifies the
number of physical connections that should be maintained. Note, this does not mean the
connection pool will start with the minimum number of connections but that it will not go
beneath that value once it reaches it. Many of the connection properties interact with each
other. For example, the Reap time specifies, in seconds, the interval between runs of the
connection pool’s maintenance thread. This value will affect the accuracy of both the

Unused timeout and the Aged timeout.

WA5716G11_ConnectionPool.ppt

Page 13 of 33

IBM Software Group EH

Connection pool tuning tasks

= Monitor connection pool runtime behavior ﬁ
» View connection pool performance metrics using

Tivoli Performance Viewer)
» Generate tuning advice using Performance Advisor Manior
= Tune connection pool parameters ‘
» Make one change at a time v
» Apply recommendations and best practices Tune
= Test application

» Use a load generation tool to simulate production-
like loads v

» Compare results with original baseline

Test
» Document results
= Repeat Monitor-Tune-Test cycle until problem is resolved
and performance goals are met
OMAR ~ %
Connection pool tuning and management problems © 2009 IBM Corporation

Performance tuning, in general, is an iterative and incremental process consisting of
multiple Monitor-Tune-Test cycles. Having the right tools, including a load generation tool
to simulate real-world users for load testing, is critical to ensure successful results. The
art of performance tuning is a mixture of documentation, test data, and experience. There
are some tools that can assist with this practice such as the Tivoli Performance Advisor
provided in WebSphere Application Server V6 via the administrative console, but the
suggestions that it offers still need to be verified through load testing. The general method
for getting the correct value is to increase the timeout and connection parameters until the
timeout issue disappears and then backing them off until any wasted resources are
recovered. Note that the Performance Monitoring Infrastructure (PMI) is enabled by

default in WebSphere V6 and can used to measure performance metrics during the
testing.

WA5716G11_ConnectionPool.ppt Page 14 of 33

IBM Software Group mx

Tuning the connection pool

= Goal is to create a large enough pool that can handle a peak load
but does not unnecessarily take up system resources

= In order to successfully tune the connection pool, you need to know
two pieces of information:
» The requests per second that occur during a peak
» How long the database takes to respond to each type of operation

= Key parameters to tune:
» Maximum connections

= Optimal value for pool size is that which reduces the value of concurrent waiters
for a connection (WaitingThreadCount)

» Connection timeout

= Value should be based on a combination of how long the database operations
take to complete and the number of concurrent waiters for a connection

When tuning, the correct parameter values can only be discovered through trial and error.
In particular, the two parameters that will have the greatest effect on correcting connection
pool configuration errors are the connection timeout and maximum connections. If the time
taken to complete a database operation is greater than the amount of time a thread is
willing to wait for a resource, then increasing the number of available connections will not
solve the problem. Conversely, if the connections are short-lived, then increasing their
number can lead to the application server being overloaded in other areas during a peak in
requests because the extra connections are unnecessarily consuming resources. Also, the
number of idle connections during off peak periods should be weighed against the pool
ramp up time when a peak occurs. By understanding the nature of these parameters and
the nature of the database operations that will occur during a peak load, an optimal
configuration can be achieved leading to optimal performance with the lowest possible
overhead.

WA5716G11_ConnectionPool.ppt Page 15 of 33

|BM Software Group EH

Connection pool tuning best practices

= Maximum connections setting
» Better performance is generally achieved if this value is set lower than the
value for the maximum size of the Web container thread pool
= Connection timeout setting
» If a ConnectionWaitTimeoutException is found in the WebSphere logs:
= Obtain the average database operations duration for the application
= Start with a value that is five seconds longer than this average
= Graduallyincrease it until problem is resolved or setting is at the highest
value that the client will tolerate
= Before you increase the pool size, consult the database
administrator

» Ensure that the database server is configured to handle the maximum pool
size setting for all servers in a clustered environment

The database connection pool Minimum and Maximum connections values are often
misunderstood. If you set a maximum of 40 connections and a minimum of 10
connections, the pool will not start with 10 connections. The value of 10 connections
minimum, is actually a low water mark. Until there are 10 connections required
concurrently, the pool will only contain the maximum amount of concurrent connections
required up to that point. Therefore, if the number of concurrent connections has only ever
reached six, then the pool will contain six connections. Once the number of connections
needed exceeds 10, the number of connections in the pool will not drop below 10 until the
pool is cleaned out. For example, after the reap time expires, all unused connections are
destroyed until the Minimum connections threshold is reached. Configuring a data sources
should be done in consultation with the database administrator. For instance, the
connection pool size should not be larger than the number of agents or connections
allowed on the database server. This can become an issue, especially in a cluster,
because each application server will allocate its own pool. To compute the maximum
connections the database must support, multiply the connection pool size by the size of
the cluster.

WA5716G11_ConnectionPool.ppt Page 16 of 33

| IBM Software Group Eg

Monitoring the connection pool using TPV

= The following key connection pooling performance metrics should be

monitored:

PoolSize Size of the connection pool Increases as new connections are created (up to the
value of Maximum connections) and decreases
when connections are destroyed
A significant number of creates and destroys is an
indication that the pool size (Maximum connections)
should be adjusted

PercentUsed Average percent of the pool If consistently low, you might want to decrease the

that is in use pool size

WaitingThread Count Average number of threads The optimal value for the pool size is that which

that are concurrently waiting reduces this value
for a connection

PercentMaxed Average percent of the time Ensure that you are not consistently maxed a 100%

that all connections are in use

Connection pool tuning and management problems © 2009 IBM Corporation

Here are some of the key metrics that WebSphere Application Server monitors in the PMI.
These metrics are displayed in TPV under the JDBC Connection Pools and JCA
Connection Pools modules. Monitoring the PoolSize metric will allow you to examine how
the application uses connections from the pool and note trends and behaviors. The
WaitingThreadCount metric is a good way to determine if your pool is sized too small. This
metric tracks the number of threads that are having to wait for a connection to become
available before completing their requested operations. Lastly, the PercentMaxed value is
a key point for determining if your pool size is too small. It is ok to hover in the high
percentages for short periods of time however, a pool that is 100% utilized for long periods
of time is bound to have waiting threads and long response times that will adversely affect
the application performance.

WA5716G11_ConnectionPool.ppt Page 17 of 33

IBM Software Group EH

TPV ti | itori ple
> serverl
The performance data for this server.
I
Start Logging
[Refresh | [view vodue(s)] m
00 = - -
= servert ! @
Apsor
= Settngs
= Summary Reports 00 -
& Performance Mocules
@
&[] J0BC Connection Pocls
& €0
[smRurtime é
& >
& o
& [Servet Session Manager
{ system Data
8 [T Thread Pools
200
-]
® . » » > »
= os b = - " &5 1§
53.00 PN 1593 PN 201:06 PM 2023PM 20412°0
| Deselect all items ' ’?‘lma
B [) | ResetToZero || ClearBuffer || ViewTable || Show Legend |
Select Narker Name ‘ Value Scale Update Scaed Value

Connection pool tuning and management problems © 2009 IBM Corporation

This is a screen capture of the Tivoli Performance Viewer displaying information on the
JDBC Connection Pools. The cyan colored graph plots the PercentUsed metric. The dark
green graph plots the FreePoolSize metric. And the green graph plots the CreateCount
metric. In this example, ten connections have been created, reaching the default
maximum connections value for the pool. Notice that, as expected, when the
FreePoolSize is zero indicating no connection available in the pool, the PercentUsed value
is at 100%.

WA5716G11_ConnectionPool.ppt Page 18 of 33

Generating tuning advice using Performance Advisor

= TPV Performance Advisor can provide configuration
advice for connection pool size:

» Advice opens in the Performance Advisor section of TPV
» Based on collected PMI data over the last one minute interval
» Uses IBM-defined rules of thumb for advice basis

= Limitations:

» Pool sizing advice might not be generated if your timeout

values are too high (pools are not returning back to minimum
values)

» TPV Advisor only gives recommendations when processor
usage is greater than or equal to 50%

Connection pool tunina and management problems © 2009 IBM Corporation
TPV Performance Advisor is one of the ways that WebSphere Application Server can
provide tuning advice. TPV Performance Advisor runs on demand and outputs
recommendations to a graphical interface in the administrative console. It's
recommendations are based on situations it observes. For example, if it observes that the
number of connections is continuously low then it will recommend that you lower the size

of the connection pool. The TPV Performance Advisor can be accessed and configured in
the administrative console.

WA5716G11_ConnectionPool.ppt Page 19 of 33

IBM Software Group

Runtime Events > Message Details
Runtime events propagating from the server

General Properties

Performance Advisor tuning advice example

IEM

Message

TUNEO206W: Decreasing the connection pool for data source jdbc/TradeDataSource by setting the
minimum size to 0 and the maximum size to 3 may improve performance. Additional explanatory data
follows. Pool utilization: 1.2%. This alert has been issued 1 time(s) in a row. The threshold will be
updated to reduce the overhead of the analysis

Message type
Warning

[Decreasing the size supports better pooling and frees memory resources

]

User action

From the administrative console, dick: Resources > JDBC Providers > JDBC_provider > Data Sources >
data_source > Connection pool properties

|

Message Originator

com.ibm.ws.performance.tuning, serven Alert. TraceResponse

Source object type
RasLoggingService]

Timestarm,
[oct 19, 2004 9:28:35 am eOT]

Thread 1d
15

Node name
[1aptop-rzhouNoden1]

Server name
serverl]

=

Connection pool tuning and management problems

© 2009 IBM Corporation

This slide shows an example of connection pool tuning advice generated by the Runtime
Performance Advisor. From the screen capture we can see a tuning recommendation
stating that the minimum size of the TradeDataSource pool should be reduced to zero and
the maximum size of the pool should be three based on the data collected by the advisor
component. Note that the threshold for the message adjusts automatically to prevent the
system from issuing multiple, redundant messages for the same values.

WA5716G11_ConnectionPool.ppt

Page 20 of 33

il

‘ IBM Software Group

Troubleshooting connection leaks in the problem
determination path ?

Review
WebSphere logs

v
Yes taleConnectio No
Exception?

Troubleshoot
Tro%%m{)gnﬁa'e connection pool
it configuration
p problem

Troubleshoot
connection leak

Connection pool tuning and management problems © 2009 IBM Corporation

After you have ruled out the possibility of a stale connection and connection pool tuning
problem, consider the possibility of a connection leak.

WA5716G11_ConnectionPool.ppt Page 21 of 33

Connection leaks

= A connection leak is a situation that arises when
allocated connections are not properly released
back to the pool after use.

= |t causes:
» User response time to increase

» Eventual system lock-up if all worker threads are waiting
for a connection

» ConnectionWaitTimeoutExceptions to be thrown when
the connection timeout threshold is reached

Connection pool tuning and management problems © 2009 IBM Corporation

A connection leak is typically identified by a ConnectionWaitTimeoutException in the
WebSphere logs. WebSphere Application Server is smart enough to eventually time-out
orphaned connections and return them to the pool, but for an application that makes
frequent use of database connections, this might not be enough corrective action to
maintain throughput levels. New connections can get queued up waiting for the database

while old connections are waiting to be timed out. This can bring the application grinding to
a halt.

WA5716G11_ConnectionPool.ppt Page 22 of 33

Common causes of connection leaks

= Poorly-written applications often do not properly release
database connections

» Forget to call connection.close()

» Appears most often in an exception case
= Connections should be closed in a finally{} block

» Also caused by one method getting a connection, invoking multiple
methods, and then forgetting to close the connection when done

= Orphaned connections will only return to the pool after
timeout

» Can cause a back-up of new connections waiting for old connections
to time-out

» New connections that have waited too long create a
ConnectionWaitTimeoutException

Connection pool tunina and management problems © 2009 IBM Corporation

The most common reason for a connection leak is when an application does not
defensively manage the connections it requests from WebSphere Application Server. This
often happens because the application does not properly close connections. The
connections should be called in the finally code block of a try/catch/finally construct to
ensure that connections are closed properly. Unfortunately, connection leaks have
traditionally been hard to diagnose because the error messages do not typically provide
specific enough information about the source of the problem. A source code review is
typically needed to find where the connections are not being properly closed.

WA5716G11_ConnectionPool.ppt Page 23 of 33

IBM Software Group EH

Connection leak diagnosis tasks
= Enable connection leak trace facility
» Use administrative console

» Run and monitor application
» Wait for ConnectionWaitTimeoutExceptions to occur

» Review and analyze trace file
» Locate source of leak and resolve problem

Connection pool tuning and management problems © 2009 IBM Corporation

To assist in locating the cause of a connection leak, there are tools built into WebSphere
Application Server that can help narrow down the search. The most useful of which is the
connection leak trace facility. Connection leak tracing will allow you to gather more
detailed information about the leak. The trace utility can help you determine if connections
are not being closed or if the application should be redesigned to use fewer connections.

WA5716G11_ConnectionPool.ppt Page 24 of 33

IBM Software Group IEx

Connection leak trace facility

= A connection leak trace facility is available in
WebSphere to provide detailed diagnostic information

» Prints stack traces of all open connections to trace.log when a
ConnectionWaitTimeoutException occurs

» Enables you to narrow the search for the responsible source
code

» Light-weight with lower performance overhead than standard
connection manager tracing (1-5% impact)
= Limitation:
» Connection leak trace facility only prints a stack trace of those
connections that have been in use for more than 10 seconds

Connection pool tunina and management problems

When a thread times out waiting on connection from a full connection pool, it will create a
ConnectionWaitTimeoutException. When this exception is thrown, the connection leak
tracer will print out the stack traces for every open connection. It does so only when a
problem has occurred, providing instant recognition of when it occurred and incurs
reduced overhead when compared to the full WebSphere tracing mechanism. This feature
is useful because it shows you the call stacks for all open connections at the time of the
exception. This enables you to significantly narrow your search area when you look at the
application’s source code to try and find the responsible code. It is also helpful to IBM
support, because it will help distinguish between application problems and WebSphere
defects. When you enable the connection leak trace facility, for every time interval, the
WebSphere connection pool manager checks how long a connection has been in use and
prints the stack trace to the trace log file. Currently the default time interval is
unchangeable and defaults to ten seconds. If you have a need to change the default
value, contact IBM technical support to obtain an iFix that allows you to add a custom
property to the data source configuration.

WA5716G11_ConnectionPool.ppt Page 25 of 33

IBM Software Group E}i

Enabling the connection leak trace facility

= Enabled using the ConnLeakLogic trace group and
the finest level

Configuration Runtime

General Properties

Change Log Detail Levels

Components

[} IMPORTANT: To view log events that are below the
Detail Level, you must enable the Diagnostic Trace
Groups Service. Log events that are at Detail Level or above can
be viewed in the SystemOut log, IBM Service Log (when
enabled), or the Diagnostic Trace Service (when enabled).

*=infoXConnLeakLogic=finest > E

4. = [All Components]
4. ConfigError
4 ConnlLeaklLogic
4. JaasWCCMHelper

Connection pool tuning and management problems © 2009 IBM Corporation

The connection leak trace facility is enabled through the administrative console. To enable
the facility, start by navigating to Troubleshooting, then Logs and Trace. Select the
application server you wish to trace on and then select Diagnostic Trace. Make sure
logging is enabled and then click the Change log detail levels link. You can then specify
the required trace level under the ConnLeakLogic category.

WA5716G11_ConnectionPool.ppt Page 26 of 33

IBM Software Group EH

What to look for in the trace

= Search trace.log for the string: Connection Leak
Logic Information

= If present, there are connections that have been in
use for more than 10 seconds

EEld Logic Informat‘ion
B 00dfo anage emrrection WSRdbMana?edconnect'ionImp10a8c0a8c State:STATE_TI
Start time Tnuse Mon Ju 09 02 06:26 EDT 2007 Time inuse 11 (seconds)
Last allocation time mMon Jul 09 02:06:26 EDT 2007
getConnection stack trace information:
com. ibm.ejs. j2c. connectwmanager allocateconnection(ConnectionManager.java:712)
com. 1bm wS. rsadater dbc.wsad cDataSource getconnection wsJldbcDataSource. java:431;
v 2 on(wsidbcpatasource. java:400

avax. serv'let http Httpserv'let serV'lce Httpserv1et ava:856$

com. ibm.ws.webcontainer.servlet.Servletwrapper.service(serv etwraqper java:989)
com. ibm.ws.webcontainer.serviet. Servietwrapper.handlerequest(Servietwrapper.java:5
com. ibm.ws.wswebcontainer.servlet.Servietwrapper.handlerequest(Servietwrapper.java
com. ibm.ws.webcontainer.webapp.webApp. handlerRequest (webApp. java:3163)

Connection pool tuning and management problems © 2009 IBM Corporation

There are a few key lines to look for when you start evaluating the trace files. You will first
want to look for a line that contains the string Connection Leak Logic Information, followed
by a colon. This indicates the start of the connection leak logic output. From there, you
should check the time in use and the stack trace for each of the connections. In this
example trace, the doGet() method of SnoopServlet has been using a connection for 20
seconds and is therefore a good suspect for a source of a leaking connection.

WA5716G11_ConnectionPool.ppt Page 27 of 33

il
i

‘ IBM Software Group

Troubleshooting stale connections in the problem
determination path

e 10g
ebophere
Yes __gfaleConnectiog.No
ceptiofl

I 1
I Troubleshoot stale| | lﬂ‘%‘é’é‘ﬁ? ;%o
1 conngg}gn | configuration
" pro " prgolem

4

| G PSSO

Troubleshoot
onnection leak
problem

Connection pool tuning and management problems © 2009 IBM Corporation

If you find StaleConnectionExceptions in the WebSphere Application Server logs then your
choices are clear; start looking for stale connection problems

WA5716G11_ConnectionPool.ppt Page 28 of 33

IBM Software Group BH

Stale connections

= A stale connection problem arises when a
connection held by a client is not longer valid.

= This situation can occur for many reasons,
including:

» A connection is no longer usable because of a database
failure

» An attempt is made to re-use an orphaned connection
(applies only to version 4.0 data sources)

» A connection is closed by the version 4.0 data source
auto connection cleanup feature and is no longer usable

Connection pool tuning and management problems © 2009 IBM Corporation

A stale connection is essentially a connection that is held by a client but is no longer a
valid connection. One way this can happen is if the other end of the connection, a
database for example, experiences a failure and is no longer available. Stale connections
can also occur in Version 4.0 data sources when the connection is closed by the
connection cleanup feature but the client is still trying to use it. This will happen if the
connection has not been in use at least twice the unused timeout value. At this point, the
connection is orphaned and the client will error if it tries to use the connection again.

WA5716G11_ConnectionPool.ppt Page 29 of 33

IBM Software Group m

Recovering from a stale connection

= In general, a stale connection condition indicates that
the connection to the database has gone bad

» Connection cannot be recovered and must be completely
closed rather than returned to the pool

= Recovering from stale connections is a joint effort
between the application server run time and the
application developer:

» The application server will purge the connection pool based on
its PurgePolicy setting and eliminate the bad connection

» The application developer can explicitly catch a stale
connection exception and programmatically recover from bad
connections (for example, get a new one)

Connection pool tunina and management problems © 2009 IBM Corporation

An individual connection can not be recovered once it creates a
StaleConnectionException. Instead, the best way to recover from this type of exception is
by explicitly catching it. Catching a StaleConnectionException while running within the
context of a transaction will allow you the avoid having to repeat the entire transaction.
One option is to try and complete the pending transaction with a new connection. It is
important to note that the application server will also take actions to recover from a
StaleConnectionException depending on the PurgePolicy setting. It can either clear the
entire connection pool, assuming that if one connection went bad then all

other connections will likely have the same problem, or just clear the stale connection.

WA5716G11_ConnectionPool.ppt Page 30 of 33

IBM Software Group mH

Other stale connection troubleshooting tasks

= Check database or firewall timeout settings

» If present, they can close connections and cause
StaleConnectionExceptions

= Determine if a specific query is getting the
exception

» Examine the SQLState and SQLCode returned with the
exception

Connection pool tuning and management problems

There are several other reasons why a connection might become stale, many of which
exist beyond the control of WebSphere Application Server. One common reason is a
discrepancy between the firewall timeout settings and the connection timeout settings. It is
generally a good practice to make sure the connection pool aged timeout is less than the
firewall's timeout and that both are less than the database timeout. It is also possible that
you are experiencing a StaleConnectionException because the returned SQLCode maps
to a StaleConnection. If you aren‘t able to find the source of the problem by taking a quick
look at the various components involved in the connection then your best bet is to turn on
tracing and gather more information. This is can be very useful when a connection is
unusable because of a SQLException that did not immediately map to a
StaleConnectionException but eventually resulted in one being thrown.

WA5716G11_ConnectionPool.ppt Page 31 of 33

IBM Software Group mﬂ

Unit summary

Now that you have completed this unit, you should
be able to:

= [dentify connection pool problems

= Describe what to look for in the WebSphere
Application Server logs

= Enable tracing for connection manager
components

= Interpret and analyze the trace data

» Describe the diagnostic provider MBeans and
utility

Connection pool tuning and management problems © 2009 IBM Corporation

Now that you have completed this unit, you should be able to identify connection pool
problems, describe what to look for in the WebSphere Application Server logs, enable
tracing for connection manager components, interpret and analyze the trace data, and
describe the diagnostic provider MBeans and utility.

WA5716G11_ConnectionPool.ppt Page 32 of 33

| |BM Software Group

Trademarks, copyrights, and disclaimers

IBM, the IBM logo, ibm.com, and the following terms are of i ines Ci ion in the United States, other countries, or both:
cics DB2 MS Tivoli WebSphere
If these and other BM trademarked terms are marked onmuflu inthis ion with a synbol(@or“‘)uwsesylmobmweus registered or common law
trademarks owned by IBM at the time this Such may also be regist common law ies. A current list of other IBM
trademarks is available on the Web at "Copyright and tﬂdemrk information™ at http://www. ibm conviegal/co; Ade shtmi
Java, JDBC, and all J; and logos are of Sun Mi , Inc. in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.
Product data has been reviewed for accuracyas of the date of initial publication. Product data is subjectto change without notice. This could include
ical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding BM's future orenm

and intent are subjectto ehlngeorwlmrawalwlhmnme and rept goals and obj only. inthis to IBM ‘products, progr or services does notimply
that IBM intends to make such products, programs or servicesavailable in al ‘Countries in which IBM operates or does business. Any referenceto an BM Program Product in this
document is not intended to state or lrw um only that program product may be used. Any functionally equmlent program, that does not infringe IBM's intellectual property rights, may be
used instead.
THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "ASIS" WITHOUT ANY WARRANTY, ETHER EXPRESS OR IMPLED. BM EXP‘ESSL DISCLAMS ANY

WARRANTES OF MERCHANTABILITY, FITNESS FOR APARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no to update ion. IBM p(oduds
are ifatall, i mmelema»d ions of the ags (for example, IBM Customer Ag! of Limited Y, Program
Agreement, etc.) under which they are provided. Information concerning non-IBM products ined fromthe of those products, their or otn er
publicly available sources. IBM has not tested those products in with this ion and cannot y of per or any other claims related

to non-IBM products.
IBM makes no representations or warranties, express or implied, regarding non-BM products and services.
herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright

ision of the § e
licenses should be made, in writing, to:
IBM Director of Licensing

Armonk, NY 10504-1785
USA.

Per is basedon and projections using standard IBM in All as of
how those customers have used IBM products and the results they may have achieved. The ucmul mmughput or per!omunce !hat uny user will experience wl varydependng upon
considerations such as the amount of multiprogramming in the user's job stream, the /O p

can be given that an individual user will achi ghput or per p qui mmerama 3

© Copyright i i ines C ion 2009, All rights reserved.

Note to U.S. Users- ion related to i rights-Use, ion or di is subjectto ictions set forth in GSA ADP Schedule Contract and IBM Corp.

Connection pool tuning and management problems © 2009 IBM Corporation

WA5716G11_ConnectionPool.ppt Page 33 of 33

