
WA5716G09_OutOfMemory.ppt

This unit covers the problem determination techniques associated with out of memory 

problems in WebSphere® Application Server.

Page 1 of 22



WA5716G09_OutOfMemory.ppt

When the Java virtual machine, or JVM, tries to allocate an object and it fails, it runs 

garbage collection to free up heap space from objects that are no longer being used. If the 

object cannot be allocated after garbage collection, the JVM creates an 

OutOfMemoryError.

Page 2 of 22



WA5716G09_OutOfMemory.ppt

Memory is not explicitly allocated and deallocated in Java, like in C code,but it is still 

possible to create a memory leak. One example is to save an object into some type of 

collection. If the collection is a class object, and the class always stays loaded, the object 

will never be removed from the collection. If objects are continuously added to the 

collection, the collection can grow until it consumes a significant portion of the Java heap. 

The misuse of object caches is a common cause of memory leaks seen in applications 

running in WebSphere. Another commonly seen misuse of cache in WebSphere is the 

HTTP maximum Sessions parameter in WebSphere. HTTP Sessions can be written to 

store very large objects. If the HTTP maximum sessions parameter is set too high, then it 

will again consume a large portion of the JVM heap.

Page 3 of 22



WA5716G09_OutOfMemory.ppt

When the Java Virtual Machine is unable to find enough contiguous memory in the heap 

for object allocation, and it has already called the garbage collection routine, it will then 

attempt to grow the JVM heap. In order to grow the JVM heap the JVM must request, and 

be granted, system memory from the operating system. If the operating system is unable 

to provide memory to the JVM for heap expansion, the JVM will throw an out of memory. 

This can also occur within Java native interface code.

Page 4 of 22



WA5716G09_OutOfMemory.ppt

The native heap is the portion of the memory for the JVM process that does not include 

the Java heap. This space is used for holding data for the JVM’s internal components such 

as the garbage collector and class loader. Additionally, native memory is used to underpin 

or support Java data structures like threads and classes. The size of the native memory 

cannot be directly controlled. It is basically total memory minus the maximum Java heap 

size, and is further bounded by operating system constraints and libraries..

Page 5 of 22



WA5716G09_OutOfMemory.ppt

The Tivoli Performance Viewer is embedded within the WebSphere Administrative Client. 

It uses the Performance Monitoring infrastructure to capture information about the 

WebSphere runtime, such as the JVM heap size.

Page 6 of 22



WA5716G09_OutOfMemory.ppt

When looking at a javacore file there are some key eye-catchers that indicate an 

OutOfMemory condition. One such eye-catcher is in the dump event section. The javacore 

should indicate very clearly that the dump was created due to an OutOfMemoryError.

Page 7 of 22



WA5716G09_OutOfMemory.ppt

The verbose garbage collection or verbosegc output is the diagnostic data used to identify 

what type of OutOfMemoryError condition is occurring on the system.

Page 8 of 22



WA5716G09_OutOfMemory.ppt

Once you locate the OutOfMemoryError in the log, you want to first examine the allocation 

failure that caused the event to occur. You need to check the size of the object to be 

allocated, and the current size of the Java heap. You can also observe what percentage of 

the heap is currently free.

Page 9 of 22



WA5716G09_OutOfMemory.ppt

The example on this slide shows output from the verbose garbage collection log and 

shows different JVM-related diagnostic messages. In this case both a heapdump and a 

javadump were configured to be created if an OutOfMemory exception was thrown. 

Search the native_stderr.log output for “Heap Dump or “Java Dump” and look for the 

failure entry directly preceding the output.

Page 10 of 22



WA5716G09_OutOfMemory.ppt

The Garbage Collection and Memory Visualizer tool is included with the IBM Support 

Assistant and provides reporting and visualizing for a verbose garbage collection log.

Page 11 of 22



WA5716G09_OutOfMemory.ppt

The shows a screen capture sample displaying all the major components of the graphical 

interface. Pictured are the line plot graphic view, the templates view, and the graph axes 

configuration view. 

Page 12 of 22



WA5716G09_OutOfMemory.ppt

The graphs on this slide depict a sample graph showing the intervals between garbage 

collections on the top. The graph on the bottom of the slide shows a graph displaying the 

reason for each garbage collection. 

Page 13 of 22



WA5716G09_OutOfMemory.ppt

GCMV provides a summary report after parsing and analyzing the data contained in a 

verbose garbage collection log. The summary report makes recommendations for JVM 

command-line arguments that can better optimize the execution of the JVM. 

Page 14 of 22



WA5716G09_OutOfMemory.ppt

As previously mentioned, GCMV will take two garbage collection logs and compare them, 

providing feedback on tuning operations. The comparison feature is invaluable when it 

comes to JVM tuning operations. 

Page 15 of 22



WA5716G09_OutOfMemory.ppt

The Memory Dump Diagnostic Tool for Java, or MDD4J, provides good analysis and 

interpretation of heapdump files. There are two forms of analysis that can be performed. 

Single heap dump analysis from an OutOfMemoryError will help in diagnosing the root 

cause of the crash. Multi-heapdump analysis from multiple heapdumps taken some time 

apart can help in determining the cause of a memory leak.

Page 16 of 22



WA5716G09_OutOfMemory.ppt

The Analysis Summary page gives a quick summary of information extracted from the 

heap dump. This information includes the size of the memory dumped to file, and the 

number of objects contained in memory. It‘s important to verify that the heap size dumped 

to file is correct, otherwise you are looking at a truncated heap dump which will not contain 

useful information.

Page 17 of 22



WA5716G09_OutOfMemory.ppt

The Suspects tab is where MDD4J shows you who is potentially leaking the memory.

Page 18 of 22



WA5716G09_OutOfMemory.ppt

The Explore Context and Contents tab shows the ownership context of selected suspects. 

Users can select nodes listed on the drop-down list, and graphically explore the ownership 

context to identify objects consuming significant memory. 

Page 19 of 22



WA5716G09_OutOfMemory.ppt

The Browse tab allows you to traverse the object tree looking for significant drops in 

memory usage. On the left, you can see the details of the highlighted object in the tree on 

the right. The key information is the Total Reach Size, which tells you how much memory 

is being used by the highlighted object, and all of the referenced objects below it in the 

tree. You can identify the leaking object by traversing down the tree until you go from a 

parent to one of its children, and the Total Reach Size drops significantly.

Page 20 of 22



WA5716G09_OutOfMemory.ppt

This slide contains several useful Web links that you can use to learn more about garbage 

collection tuning and memory leak detection.

Page 21 of 22



WA5716G09_OutOfMemory.ppt Page 22 of 22


