

®

IBM Software Group

© 2008 IBM Corporation

Updated September 19, 2008

IBM® WebSphere ® Application Server V7

Java™ runtime environment

This presentation describes the components of the IBM runtime environment for Java.

WASv7_JavaRuntime.ppt Page 1 of 21

IBM Software Group

2

Java runtime environment © 2008 IBM Corporation

Agenda

�Overview

�Shared data

� Just-in-time compiler

�Memory management

The first section of the presentation provides a brief overview of Java runtime
environments that are available from IBM and supported with WebSphere Application
Server V7. The rest of the presentation focuses on the components that make up the IBM
runtime environment for Java, including the ability to share data among Java Virtual
Machines, new features in the just-in-time compiler, and updates in memory management
and garbage collection.

WASv7_JavaRuntime.ppt Page 2 of 21

IBM Software Group

3

Java runtime environment © 2008 IBM Corporation

OverviewOverview

SectionSection

This section describes the Java runtimes that are available with WebSphere Application
Server V7.

WASv7_JavaRuntime.ppt Page 3 of 21

IBM Software Group

4

Java runtime environment © 2008 IBM Corporation

Runtime environment

�On Windows®, AIX®, Linux®, z/OS®

�The runtime is built on the underlying technology from
Java 5

�Enhancements in the virtual machine, garbage collector,
just-in-time compiler

�On the i5/OS® platform, the Java runtime is a part
of the operating system
�Not bundled with the application server
�Two versions are available: J9 and Classic

�Solaris and HP platforms use a hybrid JDK
�Runtime components do not come from IBM
�Bundled with IBM XML, security, and ORB library

Java runtime support for WebSphere Application Server varies by platform. The runtime
environment on Windows, AIX, Linux, and z/OS is an IBM implementation of the Java
runtime, based on the underlying technology in the IBM SDK for Java 5. In Version 6,
there are several enhancements in the virtual machine, including memory management
and the just-in-time compiler. The rest of this presentation will focus on the updates in the
IBM SDK for Java Version 6. On all platforms except i5/OS, the Java runtime comes
packaged as a part of the WebSphere Application Server product. On the System i, the
Java runtime is a part of the operating system. There are two versions of the JDK
available for WebSphere Application Server V7 on i5/OS. On this platform, users need to
have a supported Java product installed before installing the application server. On Solaris
and HP, the application server is bundled with a hybrid JDK. This JDK contains runtime
components based on the Java 6 reference implementation, bundled with class libraries
from the IBM implementation. On all platforms, the supported Java runtime environments
for WebSphere Application Server V7 are compliant with the Java SE Platform Version 6
specification.

WASv7_JavaRuntime.ppt Page 4 of 21

IBM Software Group

5

Java runtime environment © 2008 IBM Corporation

Shared dataShared data

Section

The shared data cache allows Java Virtual Machines running on one system to share data
with each other. The next section provides information on the motivation for the shared
cache and enhancements to the cache in the Java 6 runtime.

WASv7_JavaRuntime.ppt Page 5 of 21

IBM Software Group

6

Java runtime environment © 2008 IBM Corporation

Shared cache motivation

Class Memory Segments

Object Memory (Heap)

JIT Code Cache

Class Memory Segments

Object Memory (Heap)

JVM 1

Classes
on

disk

JVM 2

System Memory

Potential
duplication!

JIT Code Cache

In the Java Virtual Machine, Java classes get loaded from disk into system memory. There
is a lot of information related to each class that ends up getting stored in memory –
including static class data, methods that have been compiled by the just-in-time compiler,
and objects that have been instantiated based on the class definition. In a typical system,
each JVM references its own portion of system memory that contains all three elements,
like in the diagram on this slide. Some of the information stored in the class memory
segments, though, is static class data. Since the data is static, that means that each JVM
on a particular system that has loaded that class is duplicating a small amount of
information in its associated memory space. Say that you have four JVMs running on one
system, and they have all loaded the class java.lang.String. Then the static data
associated with the String class is taking up space in system memory four times – once for
each Java Virtual Machine that is using that class. If the JVM can identify this duplication
and pull out that common data and store it in one place, then system memory
consumption can be reduced. This is the idea behind creating a shared data cache.

WASv7_JavaRuntime.ppt Page 6 of 21

IBM Software Group

7

Java runtime environment © 2008 IBM Corporation

Shared data cache overview

� The shared cache was introduced in IBM’s SDK for
Java 5

�Static class data was stored in an area of memory
accessible by any Java Virtual Machine (JVM) on
the system

�Cache was persistent beyond the lifetime of any
JVM but was lost on system shutdown

�Offered significant startup speed improvements
and memory savings

The shared cache was introduced in the IBM SDK for Java Version 5, to provide a
mechanism for pulling out duplicated class data and storing it in a single location. Static
class data can be stored in an area of shared memory that is accessible by any Java
Virtual Machine that is running on the system. In Java 5, the cache can be persisted
beyond the lifetime of any JVM, but since it resided only in memory, the cache was lost on
system shutdown. Enabling the shared class cache has two major advantages. First, static
class data was no longer duplicated across JVMs, so overall memory usage is reduced.
The more JVMs you have running on a system that are connecting to the same shared
cache, the greater the memory savings. Second, when class data is already resident in
memory, it no longer has to be spooled in from disk when a class is loaded. Loading
information from memory is much faster than pulling it in from a hard drive. The time
period that a JVM is starting up is a period of intense class loading. Enabling the shared
cache will reduce this class loading time and cause an improvement in JVM startup speed.

WASv7_JavaRuntime.ppt Page 7 of 21

IBM Software Group

8

Java runtime environment © 2008 IBM Corporation

Shared data cache updates

� Shared cache persistence
�Cache information can be written to a memory-mapped file

�Initial JVM startup after a reboot no longer takes a performance hit

�You can control persistence using command line options
� –Xshareclasses:persistent, –Xshareclasses:nonpersistent

� Pre-compilation of Java code
�Store ahead of time (AOT) compiled code generated by the just-in

time (JIT) compiler

�Automatically update methods if they are re-compiled

�Improves JVM startup time

�Example: –Xscmx50M –Xscminaot5M –Xscmaxaot10M
� Creates a 50M cache, guaranteeing at least 5M of space but no more than 10M for

AOT compiled code

In the Java 6 runtime, the shared cache has been improved. Now, the shared cache can
be written to a memory-mapped file so that it will persist beyond system reboot. In the
previous release, the first time that a JVM was started after system reboot, the start up
performance was slower because the shared cache needed to be repopulated. In this
release, you now have the ability to make the cache persistent, so it can always be
populated (unless you clear the cache manually). Cache persistence can be controlled
with command-line options. The types of data that can be stored in the cache have also
changed in Java 6. In addition to storing static class data in the cache, you can now also
store ahead of time compiled methods. These methods are compiled by the just-in-time
compiler and are automatically kept up-to-date in the cache if recompiled at a higher
optimization level. The compiler heuristically identifies methods that are most heavily used
in JVM startup and focuses on caching these in the shared data area to achieve the
maximum startup speed improvements. If data sharing is enabled, then ahead of time
compiled methods are cached by default. There are command-line settings that allow you
to control how much of the cache is allocated to compiled code.

WASv7_JavaRuntime.ppt Page 8 of 21

IBM Software Group

9

Java runtime environment © 2008 IBM Corporation

Shared data cache performance

Lower is better!Lower is better!

This graph illustrates the startup speed improvement provided by the shared data cache
for different applications. The improvements in the Java 5 level are a result of not having
to load all of the class data in from disk, and the improvements in Java 6 are a result of not
having to compile all of the class methods because of the ahead of time compiled code
already stored in the cache. Consider the WebSphere Application Server column on the
far right of the graph. Enabling the shared data technology from Java 5, which includes
static class data only, results in approximately 18% faster start up times than the default
settings. When the Java 6 shared cache, which includes compiled code, is enabled, start
up speed improves by around 30%, compared with the default settings.

WASv7_JavaRuntime.ppt Page 9 of 21

IBM Software Group

10

Java runtime environment © 2008 IBM Corporation

JustJust --inin --time compilertime compiler

Section

This section describes updates in the just-in-time compiler.

WASv7_JavaRuntime.ppt Page 10 of 21

IBM Software Group

11

Java runtime environment © 2008 IBM Corporation

Just-in-time compiler

� Ahead-of-time compiled code for the shared data cache is
generated by the JIT compiler

� Dynamic loop transfer (DLT)
�Detects methods that are looping in the interpreter, transfers looping

methods to the compiler at runtime

�All DLT compilation can be disabled using:
Xjit:disableDynamicLoopTransfer

� Support for new hardware
�POWER™ 6 and IBM System z10™ exploitation

� Idle mode detection to reduce processor consumption

� Better code quality for all platforms
�Faster code generated in debug mode

Enhancements in the just-in-time compiler are focused on improved performance and
support for new hardware. As discussed in the previous section, the compiler is
responsible for compiling the ahead of time methods that are stored in the shared data
cache. This new feature can greatly improve the startup speed of a Java Virtual Machine.
The compiler also contains a new dynamic loop transfer capability. Java code runs both
interpreted and compiled. Dynamic loop transfer supports breaking into the interpreter and
transferring methods that are running long loops over into the compiler. The compiler can
then optimize the method so that it runs much faster. The just-in-time compiler supports
the latest IBM processor technology, including POWER 6 and the specialized condensed
instructions available on the z10. The compiler has also been optimized to reduce idle
mode processor consumption and generate better quality code for all platforms.

WASv7_JavaRuntime.ppt Page 11 of 21

IBM Software Group

12

Java runtime environment © 2008 IBM Corporation

Memory managementMemory management

Section

This section describes memory management changes in Java 6, including changes in the
garbage collector and the new compressed references scheme for 64-bit platforms.

WASv7_JavaRuntime.ppt Page 12 of 21

IBM Software Group

13

Java runtime environment © 2008 IBM Corporation

Garbage collector

�Significantly faster class loader load/unload
performance and improved footprint

�Changes to gencon GC policy
�Hierarchical scanning – improve locality and maintain

scalability

�Removed 64mb cap on default new space size

�Default maximum value of –Xmns and –Xmnx is now
25% heap

Overall improvements in the garbage collector have been introduced to improve class
loader performance and lower memory footprint. Additionally, the generational concurrent,
or gencon, garbage collection policy has been enhanced. The policy includes new
hierarchical scanning technology, which works to improve the locality of objects in the
heap, which improves overall performance and makes the environment more scalable. In
the previous, the default maximum nursery size was 64 MB. In some environments with
large heaps, say several gigabytes of heap space, a 64 MB nursery is too small and
causes the nursery space and the tenured object space to be out of balance, which can
negatively impact performance. To make the initial nursery settings more friendly to large
heaps, it no longer defaults to 64 MB, but is set to 25% of the total heap size.

WASv7_JavaRuntime.ppt Page 13 of 21

IBM Software Group

14

Java runtime environment © 2008 IBM Corporation

Compressed references

� Available in 64-bit IBM SDKs running with limited heap

� Use 32-bit heap offsets to reference heap data

� Allows larger heap sizes with increased efficiency

� Disabled by default, enable with Xcompressedrefs

50-70% 16 EB 16 EB 64 bits

~70-100% 4 to 32 GB 4 to 32 GB 64 bits compressed

100% 1.7 GB (Win)

3.2 GB (AIX)

4 GB 32 bits

100% 1.3 GB (z/OS) 2 GB 31 bits

Efficiency Max heap Space Pointer size

Platforms that use 31- and 32-bit address spaces have limited memory space that can be
made available to the Java heap. On Windows, for example, the maximum Java heap
space that is available with most garbage collection policies is 1.7 GB. If you have an
application that you want to run on Windows and it requires a 3 GB heap, then your only
option is to switch to a 64-bit version of the operating system. On a 64-bit system, the
addressable space available to applications is essentially unlimited, at 16 exabytes, where
an exabyte is a quintillion bytes. While 64-bit platforms support larger heap sizes and have
increased throughput compared to 32-bit platforms, they also use 64-bit pointers to
reference objects. Since the Java heap is made up mostly of object references, and
moving from a 32-bit platform to a 64-bit platform causes the pointer size to double from
32-bits to 64-bits, then running an application that needed about 3 GB of memory on a 32
bit platform requires between 5 and 6 GB on a 64-bit platform. Compressed references is
a new technology that has been introduced in this release that allows 64-bit JVMs to use
32-bit heap offsets to reference heap data. This allows applications to have access to a
larger memory space than 32-bit platforms and substantially reduces the overall memory
footprint typically required to run Java on a 64-bit platform.

WASv7_JavaRuntime.ppt Page 14 of 21

IBM Software Group

15

Java runtime environment © 2008 IBM Corporation

Object structure

� 32-bit Object (24 bytes – 100%)

� 64-bit Object (48 bytes – 50%)

� 64-bit Compressed References (24 bytes –100%)

�Use 32-bit values (offsets) to represent object fields
�With scaling, can address between 4GB and 32GB

object
field

object
field

int

field
monitor flags clazz

pad flags object field object field
int

field
monitor pad clazz

object
field

object
field

int

field
monitor flags clazz

The diagrams on this page illustrate the concept of heap usage efficiency. The benchmark
for efficiency is the 32-bit environment, which requires 24 bytes to store object data. This
24 byte measurement is considered 100% efficiency. To store that same object on a 64-bit
platform requires 48 bytes of object data. This is twice the size of the space needed on the
32-bit platform, so is only considered 50% efficient. However, in a 64-bit compressed
references environment using a 4 GB heap or smaller, the usage efficiency is exactly the
same as on a 32-bit platform – 100%. This is because compressed references uses 32-bit
offsets to reference the heap, which take up half the space of 64-bit pointers. Four
gigabytes is the maximum address space supported by 32-bits, but it is possible for the
JVM to use internal scaling to address up to 32 GB of heap with compressed references.
As heap grows above 4 GB, efficiency will decrease slightly.

WASv7_JavaRuntime.ppt Page 15 of 21

IBM Software Group

16

Java runtime environment © 2008 IBM Corporation

Benefits of compressed references

� Access to larger heap space than
32-bit environments

� Smaller heaps than 64-bit
environments

� Overall throughput improvements

� More efficient heap utilization

Get SMALLER ,

Get FASTER

Using compressed references on 64-bit platforms allows the JVM to access larger heap
space than 32-bit environments while maintaining a smaller overall heap size than 64-bit
environments – this is due to the more efficient heap utilization made possible by using
smaller pointers inside Java objects. In addition, applications still receive the throughput
benefits of running in a 64-bit environment. Overall, compressed references enable Java
applications to run faster with a smaller memory footprint.

WASv7_JavaRuntime.ppt Page 16 of 21

IBM Software Group

17

Java runtime environment © 2008 IBM Corporation

Summary and referencesSummary and references

Section

This section contains a summary and references.

WASv7_JavaRuntime.ppt Page 17 of 21

IBM Software Group

18

Java runtime environment © 2008 IBM Corporation

Summary

�Shared cache allows sharing class data and
compiled methods between JVMs

� Just-in-time compiler enhancements focused on
improved performance

�Compressed references allow smaller memory
usage on 64-bit platforms

The IBM runtime environment for Java 6 includes significant changes from the previous
release, all designed to improve Java application performance. The shared data cache
allows compiled code to be shared between JVMs, which improves start up time. The just-
in-time compiler incorporates several optimizations to improve the quality and performance
of compiled code, and compressed references allow smaller heap usage on 64-bit
platforms.

WASv7_JavaRuntime.ppt Page 18 of 21

IBM Software Group

19

Java runtime environment © 2008 IBM Corporation

References

�Diagnostics Guide
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp

WASv7_JavaRuntime.ppt Page 19 of 21

IBM Software Group

20

Java runtime environment © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASv7_JavaRuntime.ppt

This module is also available in PDF format at: ../WASv7_JavaRuntime.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv7_JavaRuntime.ppt Page 20 of 21

IBM Software Group

21

Java runtime environment © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

AIX i5/OS IBM POWER System z System z10 WebSphere z/OS

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Windows and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Java runtime environment, JDK, JVM, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.
© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WASv7_JavaRuntime.ppt Page 21 of 21

