
This presentation provides an overview of new features in the JSR 289 specification for

SIP servlet 1.1. IBM WebSphere Application Server is compliant with the JSR 289

specification.

WASv8_SIP_JSR289Overview.ppt Page 1 of 25

This presentation begins by providing an overview of the goals of the SIP servlet 1.1

specification, and then discusses some of the new key features included in the

specification, starting with the application router. The application router provides a flexible

mechanism for grouping SIP application components together to provide end-to-end

services. The programming model for SIP servlet 1.1, like many other current Java

specifications, includes annotations to speed up development and simplify application

structure and packaging. Other updates in the JSR 289 specification include improved

support for converged applications that contain SIP components and other Java EE

components, and a B2buaHelper API that simplifies the process for developing the

common B2BUA model for SIP applications.

WASv8_SIP_JSR289Overview.ppt Page 2 of 25

This section provides an overview of the goals of the SIP servlet 1.1 specification.

WASv8_SIP_JSR289Overview.ppt Page 3 of 25

The SIP servlet 1.1 specification builds on the previous 1.0 specification by providing

several important new features. In the initial specification, there were several behaviors

that were not clearly defined. These intended behaviors are more carefully described in

the current specification. Many of industry’s best practices grew up around SIP servlet

applications beyond what was covered in the 1.0 specification, and the 1.1 specification

attempts to codify many of these best practices. The SIP servlet 1.1 specification also

enables developers to create more ambitious and interconnected SIP servlet-based

applications, including applications that incorporate both SIP components and other Java

EE components, like HTTP servlets and Enterprise JavaBeans.

This presentation does not cover the session initiation protocol (SIP) or the SIP servlet 1.0

specification and assumes that the student already has a basic understanding of SIP. For

those interested in a SIP refresher, see the Reference section at the end of this module for

a link to SIP overview presentation that describes how the SIP container was initially

implemented in the application server.

WASv8_SIP_JSR289Overview.ppt Page 4 of 25

This section of the presentation provides an overview of the new application router

component that is a part of the JSR 289 specification.

WASv8_SIP_JSR289Overview.ppt Page 5 of 25

SIP servlet application servers are typically provisioned with many different applications.

Each application provides specific functionality, but, by invoking multiple applications to

service a call, the deployer can build a complex and complete service. This modular and

compositional approach makes it easier for application developers to develop new

applications and for the deployer to combine applications from different sources and

manage feature interaction. A typical example from traditional telephony is a call-screening

application and a call-forwarding application. If the application server receives an incoming

INVITE destined to a callee who subscribes to both services, both applications should be

invoked.

The application router is a separate component, outside of the SIP container. The

container receives initial requests, calls the application router to determine which

application to invoke, and then the container calls that application. Once the container has

called into an application, that application calls into the appropriate servlet to handle the

request, based on the application’s configuration – for example, using mappings defined in

the application’s deployment descriptor. By default, WebSphere Application Server uses

application start-up weights to define the routing order. The JSR 289 specification also

defines a Default Application Router (DAR) properties file format and a custom application

router application format to describe application routing.

WASv8_SIP_JSR289Overview.ppt Page 6 of 25

The application router makes it easier to buy a vendor application and invoke its services,

without having to write custom wrapper code. This gives the deployer control over how the

services behave, rather than leaving integration decisions in the hands of the application

developer. Say, for example, you provide telephone service to a large number of

subscribers, and a law enforcement agency comes to you with a call tracing and

monitoring application that you need to run on a specific subset of your subscribers.

Previously, this application was invoked for all subscribers and had to include logic to run

only on the required subscribers, or you needed to write an application wrapper to

determine whether to invoke the application for a particular user. Now, under the SIP

servlet 1.1 specification, all of the logic for determining which users require which

application services can be moved outside the scope of the application itself and into the

application router.

WASv8_SIP_JSR289Overview.ppt Page 7 of 25

This section provides an overview of the annotation-based programming model introduced

in the SIP servlet 1.1 specification.

WASv8_SIP_JSR289Overview.ppt Page 8 of 25

The SIP servlet 1.1 specification introduces an annotation-based programming model for

SIP servlet applications, similar to how annotations are used throughout the Java EE 5

specification. Annotations improve the development experience by simplifying the code

being created. Annotations allow you to embed metadata directly into applications, rather

than having to use deployment descriptors. Deployment descriptors are still an option, and

will override settings described in the annotations, but they are not required.

Resource injection is a simplified model for pulling resources, like SIP utility classes or

Enterprise JavaBeans, into an enterprise application, and the new SIP servlet annotations

in JSR 289 support resource injection. Because of the use of annotations in the SIP

servlet 1.1 specification, you must use, at minimum, Java SE 5 or Java EE 5.

WASv8_SIP_JSR289Overview.ppt Page 9 of 25

The last section of this presentation covers other JSR 289 updates, including improved

support for converged applications and the B2buaHelper APIs.

WASv8_SIP_JSR289Overview.ppt Page 10 of 25

A converged SIP application is an enterprise application that involves some SIP

components and some HTTP components. An example of a converged application is the

Plants By WebSphere application provided in the Communications Enabled Applications

(CEA) samples package the you can download from the WebSphere Application Server

Samples site. It has a web based component, which is the sample plants store application,

and SIP related components included with the click to call and call notification widgets.

The widgets initiate SIP activities while the Plants by WebSphere application initiates SIP

related activities by using an HTTP session and Web related pages that host the SIP

widgets.

The Web container and the SIP container in IBM WebSphere Application Server each

have their own notion of session and affinity. The IBM WebSphere Application Server SIP

container also has its own notion of a session and affinity. These two components must

come together and cooperate if they are both used in the same application, for example

the Plants by WebSphere sample application.

WASv8_SIP_JSR289Overview.ppt Page 11 of 25

Converged applications contain both SIP servlet components and other Java EE

components, like HTTP servlets and Enterprise JavaBeans. The ability to use annotations

for resource injection rather than relying purely on ServletContext lookup allows non-

servlet components to access information from the SipFactory. IBM supported application

convergence in WebSphere Application Server V6.1 using proprietary APIs, and now this

convergence model has become the standard in JSR 289. The IBM APIs are still

supported, but the recommendation is to move to the new standardized APIs that are a

part of the SIP servlet 1.1 specification. The two new classes to support convergence in

JSR 289 are the ConvergedHttpSession, which is an extension to HttpSession for

converged applications, and the SipSessionUtil class, which provides session

management capability for converged applications.

WASv8_SIP_JSR289Overview.ppt Page 12 of 25

SIP requests and HTTP requests associated with the same user instance need to go to

the same place. Proxies performing routing will not know where to send requests from

web service clients to a converged application after a CEA web service session is

established. After a session is established Web service client calls in a converged SIP

application can land on the wrong server, and the application can fail. The new method

createEPR on the WSApplicationSession class solves this problem. Web service

applications that call this method are returned an end point reference. Web service clients

calling the application will then use the end point reference to correspond with the service

hosted on the application server. When clients use the end point reference, it will ensure

that the calls made to the service are routed to the appropriate HTTP and SIP sessions.

Without the end point reference, there is no guarantee that the Web service client calls will

make it to the correct HTTP and SIP sessions after the session is established.

WASv8_SIP_JSR289Overview.ppt Page 13 of 25

web service clients that use the end point reference generated by the

WSApplicationSession.createEPR() method will send the request to the correct server and

the correct HTTP and SIP sessions. Server proxies and containers know how to map the

request from the end point reference to the correct location. The end point reference

contains an affinity key used by proxies to determine the server and HTTP session to

target the incoming request for the web service. One important thing to note is that this

feature does not help with threading. Application developers must still pay close attention

to threading when working with a converged application to ensure that the HTTP and SIP

sessions are not accessing common objects simultaneously and therefore corrupting

object states. The Asynchronous Invocation API should be used in converged SIP

applications to ensure that common objects are accessed correctly by the HTTP and SIP

threads.

WASv8_SIP_JSR289Overview.ppt Page 14 of 25

A back-to-back user agent, or B2BUA, is a common pattern in SIP applications. The

B2BUA inserts itself into the path of the request by taking in the request, then acting as a

user agent server, or UAS, to perform some operation or transformation on the request,

and then acting as a user agent client, or UAC, and sending the request on. Previously,

the B2BUA had to clone many requests and responses passing through it and make sure

that the requests and responses got mapped appropriately back and forth across the call.

Implementations of the request mappings were often complicated and error prone. The

new B2buaHelper class makes the B2BUA pattern very easy to implement by providing a

mechanism to create a copy of an incoming request and automatically maintaining links

between sessions on both sides of the call.

WASv8_SIP_JSR289Overview.ppt Page 15 of 25

The B2buaHelper class instance can be retrieved from a SipServletRequest by invoking

the getB2buaHelper() method on it. By making that method call, that indicates to the

container that the application is acting as a B2BUA. From that point on, any user agent

operation is permitted by the application, but the application can no longer act as a Proxy.

When an application receives an initial request for which it wants to act as a B2BUA, it can

invoke the createRequest() method on the B2buaHelper class. This method returns a

request that is identical to the one provided as an argument, with the appropriate header

fields copied across. By passing in the second argument to the createRequest method as

true, the SipSessions are linked together for the original and new SipServletRequests. By

linking the sessions together, you might be able to navigate from one to the other. One

common function of a B2BUA is to forward requests and responses from one SipSession

to another, after performing some transformation or application of business logic. Using

linked sessions under the B2buaHelper API, as shown here, simplifies that pattern.

WASv8_SIP_JSR289Overview.ppt Page 16 of 25

Typically, when an application is invoked, a new SipAplicationSession object gets created

and associated with that application. However, sometimes it is required to route all

requests for a subscriber, application, or some other combination of factors to a single

SipApplicationSession instance. For example, consider a call waiting application. Say that

Alice subscribes to the call waiting service, and she’s on the telephone, talking with Bob.

During the call, Alice’s mother tries to call her, so the call waiting application is invoked to

handle the request. The call waiting application should have a way to indicate its need to

associate with the existing SipApplicationSession for Alice’s current call. It’s possible to

create such an association using a SipApplicationKey. For an application to use session

key based targeting, it needs to have one method identified by the @SipApplicationKey

annotation that it responsible for generating the session key. Each SipApplicationSession

can only be referred to by a single key.

WASv8_SIP_JSR289Overview.ppt Page 17 of 25

When processing an initial request, the container will call the @SipApplicationKey method

in an application, if such a method exists. This method takes as a parameter the incoming

SipServletRequest, which is used to generate the key. The example here shows a method

that has been defined to create an application session key. The method must be a public

static method, returning a String, and it cannot modify the incoming SipServletRequest. If

the container finds an application session already associated with a particular key, then

that session is used in processing the incoming request.

WASv8_SIP_JSR289Overview.ppt Page 18 of 25

The Parameterable interface allows a SIP header field value to be represented as a

parameter, rather than as a String. Having the ability to access Parameterable fields in a

parsed form is more convenient and allows for better performance than accessing those

header fields directly as Strings. Modifying a Parameterable object causes the

corresponding header field in the underlying object to be modified. The Address class now

implements the Parameterable interface, and the SipServletMessage and SipFactory

classes have new methods to support Parameterable types.

WASv8_SIP_JSR289Overview.ppt Page 19 of 25

Multihomed hosting is defined as a part of the SIP servlet 1.1 specification, JSR 289. In a

multihomed host environment, the SIP container has the ability to select a particular

outbound interface for routing messages. This is useful for applications that require tight

control over the outgoing request flow. For example, consider a topology in which the SIP

container running on a multihomed host has defined one trusted network interface and one

non-trusted network interface. The trusted interface is for the internal network, and the

non-trusted interface is for the external, or customer-facing, network. To fulfill security

requirements, traffic to internal servers must be separated on a physical level from

external customer traffic. In this context, when the SIP container sends out a request, the

application must be able to mandate the use of a particular outbound interface based on

the type of traffic. Using the new multihomed hosting APIs, the application can be written

to do just that.

WASv8_SIP_JSR289Overview.ppt Page 20 of 25

Using multihomed hosting requires both application changes and configuration changes.

The SIP servlet specification 1.1 includes new APIs for multihomed support, and any

application wanting to take advantage of multihomed hosting needs to use these new

APIs. The APIs make available a list of outbound interfaces that is maintained by the SIP

container and available to applications through a context attribute. The application must

set the interface on the Proxy, the ProxyBranch, or the SipSession object before sending

any outbound requests. The container sees the interface attribute and notifies the proxy

which outbound interface needs to be used to send the outbound request. In order to take

advantage of multihomed hosting, the SIP proxy must be configured with the appropriate

outbound interfaces. Multihomed hosting is configured at the proxy level, not the SIP

container level, so a multihomed topology is only supported in a network deployment

environment. The next two sections of the presentation describe the multihomed hosting

APIs and SIP proxy configuration in more detail.

WASv8_SIP_JSR289Overview.ppt Page 21 of 25

This section contains a summary and references.

WASv8_SIP_JSR289Overview.ppt Page 22 of 25

The JSR 289 specification introduces several new features for SIP applications.

Application routing provides a mechanism for removing application composition logic from

applications and simplifying integration of application components. Annotations speed up

SIP servlet application development and reduce the need for deployment descriptors.

Other API changes, like improved support for converged applications and the

B2buaHelper class, also simplify application development.

WASv8_SIP_JSR289Overview.ppt Page 23 of 25

This page contains a link to the official JSR 289 specification document, and a general SIP

education module for WebSphere Application Server V6.1 that is available on IBM

Education Assistant.

WASv8_SIP_JSR289Overview.ppt Page 24 of 25

WASv8_SIP_JSR289Overview.ppt Page 25 of 25

