

© 2011 IBM Corporation

IBM WebSphere Application Server V8

Java API for RESTful web services (JAX-RS)

This presentation describes support for Java API for RESTful web Services (JAX-RS)
included in IBM WebSphere Application Server V8.

WASV8_JAXRS.ppt Page 1 of 24

Table of contents

� REST/JAX-RS (JSR-311) Overview

� Hello World

� Servlet 3.0 Integration

� Java EE Integration
– Enterprise JavaBeans (EJB) Integration
– Java Contexts and Dependency Injection (JCDI) Integration
– JSR-250 Integration

� Summary

� References

2 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

This presentation provides an overview of the Java API for RESTful web Services (JAX
RS) support in WebSphere Application Server V8.

WASV8_JAXRS.ppt Page 2 of 24

© 2011 IBM Corporation3 Java API for RESTful web services (JAX-RS)

REST/JAXREST/JAX--RS (JSRRS (JSR--311) overview311) overview

Section

What will JAX-RS do for you?

WASV8_JAXRS.ppt Page 3 of 24

What is REST?

� Representational State Transfer, an architectural style described in Roy Fielding's doctoral
dissertation

� Manipulate resource representations (nouns) defined at URIs with pre-defined methods
(verbs)

� Use HTTP to its full capability

4 Java API for RESTful web services (JAX-RS)	 © 2011 IBM Corporation

REST stands for Representational State Transfer. The acronym was coined by Roy
Fielding in his Ph.D. dissertation, in which he lays out the guiding principles for REST-style
or RESTful web services. REST is an architectural style in which resources are identified
by URIs and interconnected through hyperlinks. Not only does REST take advantage of
the transport properties of HTTP, but it also uses HTTP verbs to invoke operations on
resources. Each HTTP request for a resource includes a verb to indicate what operation
should be performed on the resource. The standard HTTP verbs are POST, GET, PUT,
and DELETE to represent the standard database operations of create, read, update, and
delete, respectively. The HTTP response to a request is typically a standard response
code, such as 404 for resource not found or 200 for success, or a MIME-typed
representation of the resource, such as text/html.

WASV8_JAXRS.ppt	 Page 4 of 24

Why should you expose RESTful web services?

� Simpler programming model for some consumers of web services

� Easier for “last leg” kinds of clients (browsers, mobile devices, and so on)

� Re-use web development knowledge

5 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

The RESTful approach tries to simplify web services by using capabilities that are already
built into HTTP, including uniform operations, resources that are accessible using URIs,
and resources that are represented by media types. The transport layer with RESTful web
services is less complex than with SOAP-based web services. With REST, each resource
is transmitted in the body of an HTTP message, whereas a SOAP message is
encapsulated as the body of a transport message. REST services are stateless and
cacheable, and a client only needs to provide a starting URL to invoke a web service.
REST can work on any platform that has an HTTP client, including web browsers and
mobile devices.

WASV8_JAXRS.ppt Page 5 of 24

What is JAX-RS?

� JSR-311, new to Java EE 6

� Use annotations to declare services (resources) with helper classes to build implementation

� Makes servlet / web application development easier

6 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

The Java API for RESTful web Services, or JAX-RS, is an annotations-based framework
that is defined in JSR 311. JAX-RS is a Java API designed to make it easy to develop
applications that use the REST architecture. The JAX-RS API uses Java programming
language annotations to simplify the development of RESTful web services. Developers
use annotations to define resources and the actions that can be performed on those
resources. The JAX-RS runtime will generate the helper classes and artifacts for the
resource, making web application development easier.

WASV8_JAXRS.ppt Page 6 of 24

© 2011 IBM Corporation7 Java API for RESTful web services (JAX-RS)

Hello world service using web.xmlHello world service using web.xml

Section

The following charts will show an example of creating a Hello Word service using a
web.xml file.

WASV8_JAXRS.ppt Page 7 of 24

Hello world service (1 of 4)

� Want to expose a service at:

http://<hostname>:<port>/<context root>/<servlet mapping>/hello/{name}

1. Create the implementation:

package com.example;

@Path(“/hello/{name}”)

public class HelloWorldResource {

@GET

@Produces(“text/plain”)

public String getResourceRepresentation(

@PathParam(“name”) String name) {

return “Hello “ + name;

}

}

8 Java API for RESTful web services (JAX-RS)	 © 2011 IBM Corporation

The first step is to create the implementation class for the HelloWorldResource. The
@Path annotation specifies the relative URI path for the service, and the @GET and
@Produces annotations indicate that the service will process HTTP GET requests and
return a media type of “text/plain”.

WASV8_JAXRS.ppt	 Page 8 of 24

Hello world service (2 of 4)

2. Create a JAX-RS Application configuration class:

package com.example;

public class HelloWorldApplication extends Application {

@Override

public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();

classes.add(HelloWorldResource.class);

return classes;

}

}

9 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

The second step is to create a JAX-RS application configuration class, named
HelloWorldApplication. This class implements the getClasses method to return the set of
resources and providers.

WASV8_JAXRS.ppt Page 9 of 24

Hello world service (3 of 4)

3. Create your web.xml:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_3_0.xsd"

version="3.0">

<servlet>

<servlet-name>MyRESTApplication</servlet-name>

<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>

<init-param>

<param-name>javax.ws.rs.Application</param-name>

<param-value>com.example.HelloWorldApplication</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>MyRESTApplication</servlet-name>

<url-pattern>/rest/*</url-pattern>

</servlet-mapping>

</web-app>

10 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

The third step is to create the web.xml, which specifies the servlet name and mapping
information.

WASV8_JAXRS.ppt Page 10 of 24

Hello world service (4 of 4)

4. Install the WAR and give it a context root.

� Visit the URL: http://<hostname>:<port>/<context root>/<servlet mapping>/hello/{name}
– Context root configured during installation (or in EAR case, in application.xml)
– Servlet mapping from web.xml (/rest/* in this example)
– /hello/{name} from @Path annotation on class

� Example:http://localhost:9080/myapp/rest/hello/JaneDoe

11 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

In Step 4, you install the WAR and provide the context root.

WASV8_JAXRS.ppt Page 11 of 24

© 2011 IBM Corporation12 Java API for RESTful web services (JAX-RS)

Servlet 3.0 integrationServlet 3.0 integration

Section

The next section discusses Servlet 3.0 integration.

WASV8_JAXRS.ppt Page 12 of 24

Servlet 3.0 integration (Option 1)

� Servlet 3.0 no longer requires a web.xml file.

� Create an Application subclass with @ApplicationPath annotation:
@ApplicationPath(“/rest/”)

public class HelloWorldApplication extends Application {

// override getClasses method to return list of providers

// and resources

}

� The Servlet 3.0 compliant container will use the value of @ApplicationPath as the servlet
mapping.

13 Java API for RESTful web services (JAX-RS)	 © 2011 IBM Corporation

The Servlet 3.0 specification no longer requires a web.xml file for a web application. If the
application subclass contains an @ApplicationPath annotation, the Servlet 3.0-compliant
container will use the value of @ApplicationPath for the servlet mapping.

WASV8_JAXRS.ppt	 Page 13 of 24

Servlet 3.0 integration (Option 2)

� Servlet 3.0 no longer requires a web.xml file. JAX-RS does not require a list of resources
and providers be returned from your Application subclass.

� Create an Application subclass with @ApplicationPath annotation:
@ApplicationPath(“/rest/”)

public class HelloWorldApplication extends Application {

// no need to override getClasses method

}

� The Servlet 3.0 compliant container will use the value of @ApplicationPath as the servlet
mapping.

� The JAX-RS runtime will scan for and automatically add all of your JAX-RS providers and
resources to the application. Adding new resources is greatly simplified; no change to
existing code is required!

14 Java API for RESTful web services (JAX-RS)	 © 2011 IBM Corporation

In addition, JAX-RS no longer requires the Application subclass to override the getClasses
method to return the list of resources and providers. The JAX-RS runtime will
automatically scan for annotations and add the appropriate JAX-RS providers and
resources to the application.

WASV8_JAXRS.ppt	 Page 14 of 24

© 2011 IBM Corporation15 Java API for RESTful web services (JAX-RS)

Java EE integrationJava EE integration

Section

This section discusses Java EE integration.

WASV8_JAXRS.ppt Page 15 of 24

EJB integration

package com.example;

@Path(“/hello/{name}”)

@Singleton

public class HelloWorldResource {

@EJB

Nickname nickname;

@GET

@Produces(“text/plain”)

public String getResourceRepresentation(

@PathParam(“name”) String name) {

return “Hello “ + name

+ “, aka “ + nickname;

}

}

16 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

The singleton EJB is a new feature in Java EE 6. The container will maintain a single
shared instance of an EJB Singleton. In this example, the singleton Nickname will persist
the EJB state.

WASV8_JAXRS.ppt Page 16 of 24

JCDI integration (1 of 2)

package com.example;

@Path(“/hello/{name}”)

public class HelloWorldResource {

@Inject

private DatabaseAdapter dbAdapter;

@GET

@Produces(“text/plain”)

public String getResourceRepresentation(

@PathParam(“name”) String name) {

return “Hello “ + name

+ “, aka “

+ dbAdapter.getNicknameFor(name);

}

}

17 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

Java Contexts and Dependency Injection (JCDI) supports dependency injection in
managed beans. In this example, an instance of the Database adapter type is injected into
the dbAdapter field during runtime.

WASV8_JAXRS.ppt Page 17 of 24

JCDI integration (2 of 2)

� To enable JCDI support, add a WEB-INF/beans.xml file to your WAR:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemeLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

</beans>

18 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

EJB support in a WAR is automatically enabled through annotation scanning, but JCDI
support requires the beans.xml file in order to start the web beans engine for the WAR
module.

WASV8_JAXRS.ppt Page 18 of 24

JSR-250 integration

package com.example;

@Path(“/hello/{name}”)

public class HelloWorldResource {

// hello world can now delete!

@DELETE

@RolesAllowed(“admin”)

public String delUserByName(

@PathParam(“name”) String name) {

dbAdapter.delete(name);

}

}

19 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

The objective of the Java Specification Request (JSR) 250 is to define a set of annotations
that address common semantic concepts and therefore can be used by many Java EE
components. One example of a common annotation is the @RolesAllowed annotation,
which indicates that the specified method or all methods in the EJB can be accessed by
users associated with the specified roles. This example indicates that the delUserByName
method can only be accessed by users with an administrator role.

WASV8_JAXRS.ppt Page 19 of 24

© 2011 IBM Corporation20 Java API for RESTful web services (JAX-RS)

SummarySummary

Section

This section provides a summary of what you have learned in this presentation.

WASV8_JAXRS.ppt Page 20 of 24

Summary

� Java API for RESTful web Services (JAX-RS) is supported in WebSphere Application Server
V8

� Included are these:
– JAX-RS runtime previously provided in the WebSphere Application Server V6.1/V7.0

Web 2.0 Feature Pack
– Simplified configuration capabilities
– Java EE Integration

21 Java API for RESTful web services (JAX-RS)	 © 2011 IBM Corporation

The acronym JAX-RS stands for Java API for RESTful web Services. Included in
WebSphere Application Server V8 are the JAX-RS runtime, simplified configuration
capabilities, and Java EE integration.

WASV8_JAXRS.ppt	 Page 21 of 24

References

� JAX-RS information center documentation for WebSphere Application Server V8

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/welc6tech_wbs_rest_thr.html

� JAX-RS information center documentation for Web 2.0 Feature Pack for V6.1 and V7.0
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.web20fepjaxrs.doc/info/ae/ae/cwbs_jaxrs_overview.html

� Articles in developerWorks

http://www.ibm.com/developerworks/web/library/wajaxrs

http://www.ibm.com/developerworks/web/library/waapachewink1

http://www.ibm.com/search/csass/search/?sn=dw&dws=dw&q=jaxrs&Search=Search

22 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

This slide contains links to useful information.

WASV8_JAXRS.ppt Page 22 of 24

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/welc6tech_wbs_rest_thr.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.web20fepjaxrs.doc/info/ae/ae/cwbs_jaxrs_overview.html
http://www.ibm.com/developerworks/web/library/wa-jaxrs
http://www.ibm.com/developerworks/web/library/wa-apachewink1
http://www.ibm.com/search/csass/search/?sn=dw&dws=dw&q=jaxrs&Search=Search

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASV8_JAXRS.ppt

This module is also available in PDF format at: ../WASV8_JAXRS.pdf

23 Java API for RESTful web services (JAX-RS) © 2011 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASV8_JAXRS.ppt Page 23 of 24

 TTrraaddeemmaarrkkss,, ddiissccllaaiimmeerr,, aanndd ccooppyyrriigghhtt iinnffoorrmmaattiioonn

IBM, the IBM logo, ibm.com, developerWorks, and WebSphere are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other
IBM trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

24 © 2011 IBM Corporation

WASV8_JAXRS.ppt Page 24 of 24

