

© 2011 IBM Corporation

WebSphere Application Server V8

Java EE 6 overview

This presentation will provide an overview of Java EE 6.

WASV8_JEE6_Overview.ppt Page 1 of 26

© 2011 IBM Corporation 2 Java EE 6 overview

Table of contents

� Overview

� Usage scenario

� Summary

� References

This section will cover what is new in Java EE 6. It begins with the overview of the new
content in Java EE 6 followed by a description of how the technologies all work together.
However it should be noted that this is not an extensive coverage of all of the new
functionality within Java EE 6. It only covers the major additions or changes to the
platform.

WASV8_JEE6_Overview.ppt Page 2 of 26

© 2011 IBM Corporation3 Java EE 6 overview

OverviewOverview

Section

This section will introduce Java EE 6.

WASV8_JEE6_Overview.ppt Page 3 of 26

Java EE 6 themes

� Rightsizing
– Deprecate little used technology

• EJB entity beans
• JAX-RPC
• JAXR
• JSR 88 deployment

– Web profile

4 Java EE 6 overview © 2011 IBM Corporation

There are several themes in Java EE 6 covering rightsizing, extensibility, and developer
productivity improvements. Rightsizing is a way to reduce the footprint size of the EE
platform. This covers deprecating technologies that are rarely used by the industry or have
been replaced by other technologies and includes EJB entity beans such as CMP and
BMP beans, JAX-RPC (which has been replaced by JAX-WS), JAX-R, and Java EE
Deployment.

JAX-R is a web services registry technology that is no longer relevant. It has been
replaced by other technologies such as UDDI and the WebSphere Web Services Registry
and Repository, but there is no Java EE replacement technology at this time. Java EE
Deployment is rarely used by customers because it is not rich enough to handle
application deployments in most circumstances and therefore proprietary commands for
deploying applications are almost always used. There is no replacement Java EE
technology for Java EE Deployment at this time.

In addition to deprecating little used technologies the Java EE platform has also defined a
web profile. This profile is intended to address a smaller footprint requirement for basic
web applications.

WASV8_JEE6_Overview.ppt Page 4 of 26

Java EE 6 themes

� Extensibility
– See Servlet 3.0 and JASPIC for third party pluggability

� JPA is already pluggable

5 Java EE 6 overview © 2011 IBM Corporation

Extensibility is supported through several additions for plugability. You can see the Servlet
3.0 and JASPIC specifications for more details on how to plug in third party web
application and security frameworks. Be aware that JASPIC makes assumptions that
make it difficult to fully integrate with WebSphere security. If you use JASPIC, you may not
be able to take advantage of all the WebSphere security functionality.

WASV8_JEE6_Overview.ppt Page 5 of 26

Java EE 6 themes

� Enhanced ease of development
– POJO based coding style used nearly everywhere
– Dependency injection nearly everywhere
– Architected JNDI namespace with auto binding (global, application, module, component)
– DD defined JDBC resources

6 Java EE 6 overview © 2011 IBM Corporation

The most extensive set of changes for Java EE 6 cover simplification of the programming
model for Java developers. The POJO, or plain old Java object, coding style is used
throughout the platform and makes it very easy for developers to create a class, debug it,
and use it within the program. Dependency injection allows developers to get rid of lots of
boilerplate code and focus on the business logic or domain logic of the program. For
example, a developer used to be required to obtain a JNDI context, perform a JNDI
lookup, potentially cast the results, handle exceptions, and configure a deployment
descriptor reference in order to obtain a resource dependency. Now, whenever a
developer has a dependency on resources or other components they declare the
dependency with a simple annotation on a data member and the runtime takes care of
satisfying that automatically.
An architected JNDI namespace has been added to extend the scope of bound items from
the component level to other scopes including global, application, and module. In addition,
all EJBs are automatically bound under the global scope using a well known pattern,
making it easy for developers to access EJBs without having to provide vendor specific
binding information. This can simplify application deployment as it allows the application to
declare a single resource or resource reference that can be shared across multiple
modules and bound once by the application deployer. Resource bindings in the
architected JNDI namespace can be extended to the global level to share resources
across multiple applications.

Developers can also take advantage of defined JDBC resources. These allow developers
to define a database resource by annotation or in the deployment descriptor for testing
purposes, deploy the application, and test it, without having to configure their JDBC
resource through an administration console or script. This improves developer productivity.

WASV8_JEE6_Overview.ppt Page 6 of 26

Web container

� Asynchronous protocols support (like SIP and COMET)

� Annotated POJO servlets (no DD required)

� Web.xml fragments allow third party framework pluggability

� REST integration (JAX-RS)
– Simple annotated POJO based programming model for access to resources over the

web

7 Java EE 6 overview © 2011 IBM Corporation

The web container now includes asynchronous protocol support, which can be used by
higher level protocols such a SIP and COMET. Also, Servlets can now be created using a
simple POJO style. All you have to do is write the class, annotate it with a WebServlet
annotation, and you are done. There is no need to create an XML deployment descriptor
in order to define the Servlet.

Web fragments will simplify the use of third party frameworks. Normally, a web application
developer must include in the web framework library in the WAR file and configure the
deployment descriptor to use the web application framework. Web fragments allow the
developer to drop in a web framework library and the configuration of the deployment
descriptor is automatically merged in without the developer having to do anything. To
enable this, a web application framework developer must declare the metadata to merge
into the deployment descriptor as a web fragment and include this in the web framework
library in order for it to be found and automatically merged.

RESTful services, or JAX-RS, is a new technology in the Java EE platform that defines a
simple annotated POJO programming model to access resources over the web. It is
similar to web services, but without the complex description of the Web Services
Description Language. It provides support for mapping URIs to resource identities and
HTTP methods, such as GET and PUT, to operations on those resources. The industry
seems to be moving to a RESTful service style of interaction for simple remote data
access and utilizing JAX-WS Web services for more complex data interaction patterns.

WASV8_JEE6_Overview.ppt Page 7 of 26

Web container

� JSF
– Facelets (lighter, faster, better integrated than JavaServer Pages files)
– Ajax support for building Rich Internet Applications
– Skinning for custom look and feel
– Annotated POJO programming model

8 Java EE 6 overview © 2011 IBM Corporation

JavaServer Faces, or JSF, has been significantly enhanced to include support for
Facelets, Ajax, skinning, and a simplified programming model. Facelets are similar to
JavaServer Pages files, but are lighter weight, more performant, and better integrated with
JSF than JSPs and they provide a mechanism for using templates and UI composition.
JSF provides life cycle callbacks for Ajax and the rendering model supports custom look
and feel selection. Any JSF 2.0 widget library, including those that use Ajax for rich
interaction, may be used to simplify UI development. When creating Managed Beans to
handle actions and events, developers can now utilize a simple annotated POJO
programming model with injection support. It is no longer required to declare Managed
Beans in the faces-config.xml file. A new technology called Contexts and Dependency
Injection, or CDI, has been integrated with JSF to provide a much richer mechanism for
composing Managed Beans. This, in combination with the ability to package EJBs in WAR
files and the use of CDI to directly refer to EJBs from Facelets, can greatly simplify a web
application developer's life.

WASV8_JEE6_Overview.ppt Page 8 of 26

EJB and managed beans

� Managed beans provides basic POJO components with low requirements for container

services

� EJB extends to provide complete simple annotated POJO programming model, including
– EJB beans with no interface
– Asynchronous method invocation extensions for long running work
– Stateful web services
– Typical transaction, security, and concurrency container services

� EJB singletons as a first class pattern
– JVM cache patterns
– Statistics/RAS aggregators
– Serializer for potentially concurrent work (like file I/O)
– App startup/shutdown notification alternative to servlet init listener

9 Java EE 6 overview	 © 2011 IBM Corporation

Although Managed Beans have been a part of JSF for some time, the Java EE 6 platform
now defines them as a first class component model. Managed Beans provide a simple
light weight POJO component model that will serve as the basis for the future of business
logic development in the Java EE platform. Managed Beans support basic life cycle
services and dependency injection and EJBs extend the simple lightweight programming
model to provide enterprise qualities of service such as remote invocation, transactions,
security, and concurrency. In the future, you should expect that the EJB container services
may be individually selectable and usable with Managed Beans on an as needed basis.

The EJB programming model has been extended in several ways to make life easier for
developers. One extension is to allow local beans with no interface. This makes it very
easy for a developer to start out with Managed Beans and, with the addition of a simple
annotation, obtain the enterprise qualities of service of EJBs without changing any more of
the application. Asynchronous method invocation has also been added to allow long
running methods to work in parallel. In addition, stateful web services support has been
added to provide a consistent programming model with the web container, making it easier
to add container managed transaction support to existing web services that may be
packaged within a WAR file. There are a number of scenarios that require a singleton
pattern such as caching within a JVM, aggregators of data, serializing concurrent work,
and application life cycle events. EJBs now support singletons as a first class
programming model.

WASV8_JEE6_Overview.ppt	 Page 9 of 26

EJB and managed beans

� Simplified packaging of EJBs in WARs for simple application scenarios
– Extremely simplifies cases where application needs some simple POJO business logic

� Standalone EJB container for simplified unit testing

10 Java EE 6 overview © 2011 IBM Corporation

One of the more interesting extensions is that EJBs may now be packaged in WAR files.
There is no longer an artificial barrier that requires a web application developer to package
their EJBs in a separate module. This extremely simplifies cases where web applications
need to use transactional session facade components for persistence. In addition, a stand­
alone EJB container can now be used to simplify unit testing. This, in combination with
CDI injection and JSF integration makes it much easier for developers to write their
applications, package, and test them.

WASV8_JEE6_Overview.ppt Page 10 of 26

Bean validation

� Centralized location for defining validation constraints
– Removes headaches of maintaining constraint checks across all portions of an

application
– Simple annotated POJO constraint definition

� Extensible constraints, validators, messages

� Hook points defined by various specs to provide automated validation of constraints
– JSF, JPA, JCA

11 Java EE 6 overview © 2011 IBM Corporation

One of the problems in developing and maintaining an application is with ensuring valid
and consistent data throughout the application. A developer today must write validation
logic in the application in many places in order to ensure data integrity is maintained.
Keeping all the validation logic in sync can be a problem. To solve this problem, the Java
EE platform has added Bean Validation technology that allows the constraint checks for
data to be defined in a central location and the logic for validating the data can easily be
invoked from anywhere within the application. Simple annotations provide the constraint
definition and the constraint can be extended as needed for more complex validations.
The platform provides automatic validation of data at various points including JSF form
submission, Java Persistence data storage, and connector configuration validation, but
this can be extended with specific application invocations as well.

WASV8_JEE6_Overview.ppt Page 11 of 26

© 2011 IBM Corporation12 Java EE 6 overview

Usage scenariosUsage scenarios

Section

This section will cover a usage pattern that shows these technologies working together.

The scenario is based on a web application that provides access to account information.

WASV8_JEE6_Overview.ppt Page 12 of 26

JSF
Page

Putting it all together (1 of 9)

Account
Facelet

WAR
file

Account
EJB

Account
Entity

13 Java EE 6 overview © 2011 IBM Corporation

This example begins on the development side where the developer has created an
account entity that represents an Object-Relational mapping of a database table to a Java
object, an account session EJB that works as a transactional session facade for the
account entity, and an account Facelet for visualizing the account entity in a web
application. The account entity will be annotated with constraints to ensure the data
integrity of the account data. The example will also use the account EJB as a Managed
Bean to handle JSF actions. These are packaged in a single WAR file with no deployment
descriptor, as all the metadata is represented as annotations in the source code.

WASV8_JEE6_Overview.ppt Page 13 of 26

r

JSF
Page

Putting it all together (2 of 9)

JSF
Engine

EJB
Containe

Account
Facelet

WAR
file

Account
EJB

Account
Entity

14 Java EE 6 overview © 2011 IBM Corporation

When the WAR file is deployed, the JSF Facelets are registered with the JSF engine and
the EJB container starts up the session facade EJB.

WASV8_JEE6_Overview.ppt Page 14 of 26

r

JSF
Page

Putting it all together (3 of 9)

Get Account Info
Action

JSF
Engine

EJB
Containe

JPA

Account
Facelet

WAR
file

Account
EJB

Account
Entity

Request
context

15 Java EE 6 overview © 2011 IBM Corporation

At some point in the execution of the web application the user will press a button to
retrieve the account information. This will drive an action event on the account EJB and
the session facade will fetch the account information from the database using JPA and
store that information as part of the request context.

WASV8_JEE6_Overview.ppt Page 15 of 26

r

JSF
Page

Putting it all together (4 of 9)

JSF
Engine

EJB
Containe

JPA

Account
Facelet

WAR
file

Account
EJB

Account
Entity

Request
context

Navigate to Account view

16 Java EE 6 overview © 2011 IBM Corporation

It then returns navigation information for the next displayed web page to be handled by the
account Facelet.

WASV8_JEE6_Overview.ppt Page 16 of 26

r

JSF
Page

Putting it all together (5 of 9)

JSF
Engine

EJB
Containe

JPA CDI
Service

Account
Facelet

WAR
file

Account
EJB

Account
Entity

Get request scoped acct

EL
Resolver

Request
context

17 Java EE 6 overview © 2011 IBM Corporation

The JSF engine will render the account Facelet, utilizing a template layout, and in the
process of doing so will use the EL resolver to obtain values for the account information
fields of the Facelet. The EL resolver will then ask the CDI Service for an appropriate
instance of the account entity. The CDI Service will look in the request context to see if an
instance already exists and since it does it will return that to the EL resolver. The EL
resolver will then use the account entity instance to populate the fields of the form and
display that to the browser. Note that CDI supports managing other contexts such as
session and application contexts as well.

WASV8_JEE6_Overview.ppt Page 17 of 26

r

JSF
Page

Putting it all together (6 of 9)

CDI
Service

JSF
Engine

EJB
Containe

JPA

Account
Facelet

WAR
file

Account
EJB

Account
Entity

Backing
bean

Request
context

18 Java EE 6 overview © 2011 IBM Corporation

When the user has finished updating the form, they click an update button which submits
the form to the JSF engine for processing. The JSF engine creates an account entity
instance to use as a backing bean for the request data...

WASV8_JEE6_Overview.ppt Page 18 of 26

r

JSF
Page

Putting it all together (7 of 9)

CDI
Service

JSF
Engine

EJB
Containe

Bean Validation
Service

JPA

Account
Facelet

WAR
file

Account
EJB

Account
Entity

Validate form
data

Request
context

19 Java EE 6 overview © 2011 IBM Corporation

... and because the account entity backing bean has been annotated with validation
constraints, it automatically calls the Bean Validation service to validate the form data. If
validation fails, constraint specific error messages can be displayed to the user.

WASV8_JEE6_Overview.ppt Page 19 of 26

r

JSF
Page

Putting it all together (8 of 9)

CDI
Service

JSF
Engine

EJB
Containe

Bean Validation
Service

JPA

Upd account info action

Account
Facelet

WAR
file

Account
EJB

Account
Entity

Request
context

20 Java EE 6 overview © 2011 IBM Corporation

Once validation has completed, the action bean for the update action is invoked, which
happens to be the session facade EJB. The session facade EJB may perform additional
business logic to calculate last update times, possibly changing the account entity
information.

WASV8_JEE6_Overview.ppt Page 20 of 26

r

JSF
Page

Putting it all together (9 of 9)

CDI
Service

JSF
Engine

EJB
Containe

Bean Validation
Service

JPA

Validate and
persist

Account
Facelet

WAR
file

Account
EJB

Account
Entity

Request
context

21 Java EE 6 overview © 2011 IBM Corporation

When ready, the session facade EJB persists the account entity information using JPA.
JPA notices the validation constraints associated with the account entity and automatically
calls the Bean Validation service once again to ensure data integrity. If validation fails, the
persistence operation fails. Once validation is complete, JPA will persist the account entity
information into the database.

WASV8_JEE6_Overview.ppt Page 21 of 26

© 2011 IBM Corporation22 Java EE 6 overview

SummarySummary

Section

This section will cover the key take away points.

WASV8_JEE6_Overview.ppt Page 22 of 26

Summary

� The Java EE platform is
– Getting lighter
– Addressing need to integrate with software outside the platform
– Making developers more productive

23 Java EE 6 overview © 2011 IBM Corporation

In summary, the Java EE 6 platform has been extended to make developers much more
productive by making it easier to integrate third party software with the platform, providing
a lighter weight platform that improves developer edit compile and debug cycles, and
reducing the amount of code a developer has to write, debug, and configure.

WASV8_JEE6_Overview.ppt Page 23 of 26

© 2011 IBM Corporation 24 Java EE 6 overview

References

� Java EE 6 overview
http://www.theserverside.com/news/1363662/Java-EE-6-Overview

� Java EE 6 specification
http://jcp.org/en/jsr/detail?id=316

This slide contains links to useful information.

WASV8_JEE6_Overview.ppt Page 24 of 26

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASV8_JEE6_Overview.ppt

This module is also available in PDF format at: ../WASV8_JEE6_Overview.pdf

25 Java EE 6 overview © 2011 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASV8_JEE6_Overview.ppt Page 25 of 26

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. Other company, product, or
service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

26 © 2011 IBM Corporation

WASV8_JEE6_Overview.ppt Page 26 of 26

