

© 2011 IBM Corporation

IBM WebSphere Application Server V8.0

Servlet 3.0, JSP 2.2, EL 2.2

This presentation describes support for Servlet 3.0, JavaServer Pages 2.2, and
Expression Language 2.2 which are all included in IBM WebSphere Application Server V8.

WASV8_Servlet_JSP_EL.ppt Page 1 of 39

© 2011 IBM Corporation 2

Table of contents

� Overview

� Problem determination

� Summary

� References

This presentation will go over these three technologies, show a few code samples, discuss
problem determination, and show some references.

WASV8_Servlet_JSP_EL.ppt Page 2 of 39

© 2011 IBM Corporation3

OverviewOverview

Section

What will Servlet, JSP, and the EL do for you?

WASV8_Servlet_JSP_EL.ppt Page 3 of 39

Overview of Servlet 3.0 features

� Extensibility and ease of development
– Servlet 3.0 configuration

• Annotations
• web-fragments
• Programmatic configuration
• Session configuration

• Session configuration options
• File upload/multipart form support

� Security constraints

� Asynchronous processing support

� Pluggability

� ServletContainerInitializers

4 © 2011 IBM Corporation

Servlet 3.0 addresses a few central themes. Servlet 3.0 is meant to provide extensibility
and ease the development process. It accomplishes this through the use of annotations,
web-fragments, and new configuration options. It also provides the ability to perform file
upload and handle multipart form submission.

There are new security constraints that can be used to more easily protect certain
resources and methods making the overall system more secure.

Servlet 3.0 also provides new APIs for asynchronous processing and provides pluggability
through the use of ServletContainerInitializers.

WASV8_Servlet_JSP_EL.ppt Page 4 of 39

Annotations

� “metadata-complete” attribute defines whether the web.xml is complete

� Annotations can replace web.xml configuration

� Define Servlet @WebServlet
– urlPatterns or value attribute MUST be present.
– Classes must extend javax.servlet.http.HttpServlet

� Define Filter @WebFilter
– Defaults to the FQN of the class
– urlPatterns, servletNames or value attribute must be specified

� Define a Listener @WebListener
– Implement one of javax.servlet.*Listener interfaces

� Initialization parameters to Servlet or Filter @ WebInitParam

� mime/multipart request expected @MultipartConfig

5 © 2011 IBM Corporation

Annotation processing can be very useful, but it can also affect the performance due to the
scanning that needs to be done. If annotation processing is not required, a developer can
set the “metadata-complete” attribute to define that the web.xml is complete. If this
attribute is not set, annotation processing occurs.

Annotations can be used to define servlets, filters, and listeners. Additionally, initialization
parameter annotations can be used on the servlet and filter annotations.

There is also a MultipartConfig annotation that can be used on a servlet expecting to
receive multipart requests.

WASV8_Servlet_JSP_EL.ppt Page 5 of 39

© 2011 IBM Corporation 6

Annotations code examples

Here are some examples of several different annotations. Notice that some of these
annotations take multiple parameters, some don’t take any parameters, and some have
just one parameter. You should see the javadoc for more information on each annotation.

WASV8_Servlet_JSP_EL.ppt Page 6 of 39

Web fragments

� Configuration information embedded in WEB-INF/lib jars using Web- fragments

� Scanning will NOT occur if metadata-complete=“true”

� Frameworks bundle all artifacts in the web-fragment.xml

� Absolute and Relative ordering of descriptors

� Explicit Rules for creating merged descriptor from web.xml, web-fragment.xml, and

annotations

� Main web.xml
– Overrides default or annotation set values
– Highest precedence in conflict resolution
– Inherits settings from the web fragment
– Elements declared any #of times are additive

� WebSphere Application Server will merge resource reference elements, however if there are
any merge violations, it will NOT install

7	 © 2011 IBM Corporation

Configuration information can be embedded into other jars using Web Fragments. This
provides for better pluggability as some of the same configuration settings can be applied
to multiple applications this jar is included with.

Scanning for annotations will not occur if the metadata-complete element is set in the
web.xml.

It is suggested that frameworks bundle all artifacts in the web-fragment.xml.

The specification lists ways to order these descriptor files and has certain rules for
merging and overriding configuration values. The main web.xml overrides default or
annotation set values. It is used as the highest precedence when handling conflict
resolution. It inherits other settings from the web fragments. Also, elements which can be
declared multiple times are additive. If there are merge violations when deploying an
application, the application will fail to install.

WASV8_Servlet_JSP_EL.ppt	 Page 7 of 39

Pluggability

� ServletContainerInitializer (SCI)
– plug-in shared copies of frameworks

� The container looks up SCIs using the Jar services API
– Framework must bundle a javax.servlet.ServletContainerInitializer file in jar META

INF/services pointing to the SCI implementation

� @HandlesTypes annotation on the SCI
– Controls set of classes sent to the onStartup method
– Classloading issues are ignored

� SCI.onStartup() called before any listener events are fired

� Programmatic registration + SCI

� Delineation of responsibilities

8 © 2011 IBM Corporation

Along with WebFragments, Servlet 3.0 also provides ServletContainerInitializer support. A
ServletContainerInitializer is executed before application startup and allows for
frameworks to be shared and configured. ServletContainerInitializers are found using the
Jar services A.P.I. A framework must bundle a javax.servlet.ServletContainerInitializer file
in the META-INF/services directory of its JAR referencing the ServletContainerInitializer
implementation within this file. The onStartup method of this ServletContainerInitializer is
called before any listener events are fired and a set of classes matching the
HandlesTypes annotation can be passed in. A ServletContainerInitializer can
programmatically register servlets, filters, and listeners thus giving a framework jar more
responsibility in configuring the environment.

WASV8_Servlet_JSP_EL.ppt Page 8 of 39

SCI code sample

9 © 2011 IBM Corporation

Here is a sample ServletContainerInitializer class file. Notice the HandlesTypes annotation
which will cause the onStartup method to be called passing in all the javax.servlet.Servlet
classes within the application along with the ServletContext. Also, notice that this
ServletContainerInitializer programmatically adds a listener and filter.

WASV8_Servlet_JSP_EL.ppt Page 9 of 39

Servlet 3.0: Programmatic configuration

� Dynamically configure at web application initialization
– ServletContextListener.contextInitialized
– ServletContainerInitializer.onStartup

� Declare a servlet by registering programmatically
– ServletContext.addServlet(String servletName, String className)
– ServletContext.addServlet(String servletName, Servlet servlet)
– ServletContext.addServlet (String servletName, Class <? extends
Servlet> cz)

� Instantiate and customize the given servlet before registering
– <T extends Servlet> T createServlet(Class<T> clazz)

� Methods return ServletRegistration/ServletRegistration.Dynamic
– Allows setup of init-params, URL-mappings, and security

� Similarly to add filters and listeners
– ServletContext.addFilter(…), createFilter(…)
– ServletContext.addListener(…), createListener(…)

10 © 2011 IBM Corporation

Programmatic configuration needs to occur before an application completes initialization.
Therefore, programmatic configuration should be done within ServletContextListeners
during their contextInitialized method or within ServletContainerInitializers during their
onStartup method. You can see there are multiple methods which can be used to add
Servlets. You can also create a Servlet instance using the createServlet method. If you
use the addServlet method which takes the instance, the instance should have been
created using the createServlet method. Otherwise, resource injection will not have
occurred.

These methods return ServletRegistration.Dynamic objects which can be used to further
set up init-params, URL-mappings, and security.

Filters and Listeners can be programmatically added in a similar way.

WASV8_Servlet_JSP_EL.ppt Page 10 of 39

© 2011 IBM Corporation 11

Adding servlets using APIs

Here is an example of a ServletContextListener adding three servlets using the different
method parameters.

WASV8_Servlet_JSP_EL.ppt Page 11 of 39

Asynchronous processing support

� Detach request/response from the normal thread life cycle

� Good for Ajax style server push operations

� No more waiting on resources, events or remote responses

� Improves scalability

� Uses and applications
– Asynchronous EJB method invocation
– Accessing RESTful web services
– Chat
– Quality of service

12 © 2011 IBM Corporation

Servlet 3.0 also supports Asynchronous Processing. An application can detach the
request and response from the normal thread life cycle. This is beneficial for Ajax style
server push operations. Threads can be used for active requests and there is no need to
wait for resources, events, or remote responses.

Asynchronous processing improves scalability and is useful when doing Asynchronous
EJB method invocation, RESTful web services, implementing chat or quality of service
type applications.

WASV8_Servlet_JSP_EL.ppt Page 12 of 39

Overview of asynchronous processing API

� Configured using annotations, programmatically, or XML
– @WebServlet(asyncSupported=true)
– servletRegistration.setAsyncSupported(true)
– <async-supported>true</async-supported>

� Asynchronous processing on a separate thread
– AsyncContext ServletRequest.startAsync()

• puts the request into asynchronous mode
• exit from the container on the original thread
• response is not committed when service is exited

– AsyncContext ServletRequest.startAsync(request,response)
• Preserves filter wrappers

� Application handles concurrent access to request/response objects when an
asynchronous task executes before the container-initiated dispatch that called
startAsync has returned to the container.

13	 © 2011 IBM Corporation

Asynchronous processing can be configured using annotations, programmatically, or XML.

In order to put a request into asynchronous mode, you must call startAsync on the
ServletRequest. You can also call startAsync passing in the original request and response
objects to preserve the filter wrappers. When you put a request into asynchronous mode,
you can start another runnable, dispatch to another servlet, or complete the response.
When the original thread exits out of the service method, the thread is returned to do more
processing and the response waits until a dispatch or complete is called. A word of
caution, it is up to the application developer to handle concurrent access to the request
and response objects if a runnable thread is started.

WASV8_Servlet_JSP_EL.ppt	 Page 13 of 39

© 2011 IBM Corporation 14

Request processing flow

Here is an example of the request processing flow for a sample request that goes
asynchronous. In this example, a client makes a request. The container handles the
request. It starts an asynchronous thread which waits for a response from the remote
resource while returning the original thread. When the response was obtained (or a
timeout occurred or an AsyncListener fired) the container re-dispatches to a servlet which
can generate and print the response.

WASV8_Servlet_JSP_EL.ppt Page 14 of 39

AsyncContext processing API

� Every startAsync is always paired with a AsyncContext.complete() or
AsyncContext.dispatch()

� Illegal to call startAsync
– response is already closed
– asyncSupported = false

� Response committed when
– AsyncContext.complete()

• Processing is done, response has been generated
– AsyncContext times out and there are no listeners

� If you cannot call AC.complete(), it is called for you by the container

� Chaining asynchronous tasks
– AsyncContext returned from startAsync can be used for further asynchronous

processing

15	 © 2011 IBM Corporation

Here is some more detail on the AsyncContext processing APIs. Every startAsync should
always be paired with an AsyncContext.complete or AsyncContext.dispatch. It is illegal to
call startAsync if the response has already been closed or if the servlet does not support
async behavior. The response is committed when either an AsyncContext.complete is
called or when it times out and there are no listeners to handle the behavior. If you cannot
call AsyncContext.complete, the container will call it for you. You can also chain
asynchronous tasks together for further processing as long as you only do one
AsyncContext dispatch at a time and each one is paired with a previous
AsyncContext.startAsync.

WASV8_Servlet_JSP_EL.ppt	 Page 15 of 39

AsyncContext API (1 of 2)

� AsyncContext.dispatch() … back to origin servlet

� AsyncContext.dispatch(String path) … different servlet

� AsyncContext.dispatch(ServletContext context, String path)
�
… different servlet relative to context
�

– Called to schedule the dispatch
– DispatcherType.ASYNC
– At most one asynchronous dispatch per asynchronous cycle
– Will not take effect until after the container-initiated dispatch has returned to

the container

� Response generated by Filter / Servlet
– Using container thread pool or WorkManager*
– Java EE and Security context available (EJB, JNDI, JTA …)

16	 © 2011 IBM Corporation

There are multiple dispatch APIs providing slightly different behavior. A dispatch can be
called to continue processing the request and write out the response. You can call a
dispatch from one of the asynchronous runnable threads (which makes the most sense),
or you can call it from within another servlet as long as a startAsync was previously called.
If it is called from a previous servlet, the dispatch will not take effect until the previous
servlet has completed its method.

Typically, the response should be generated by the filters/servlets. The advantage to using
asynchronous processing is to release a thread back to the container to continue
processing. By default, the asynchronous processing occurs in the WorkManager thread
pool which has Java EE and Security context available.

WASV8_Servlet_JSP_EL.ppt	 Page 16 of 39

© 2011 IBM Corporation 17

AsyncContext API (2 of 2)

Here are some more asynchronous processing APIs that allow you configure or get state
from the AsyncContext object. Note that you can also create and add an AsyncListener to
this context.

WASV8_Servlet_JSP_EL.ppt Page 17 of 39

Best practices

� Do not mix ARD and RRD with Servlet 3.0

� Do Not create a new thread for each asynchronous operation
– Use threadpool or AsyncContext.start(Runnable)

� Client side Ajax to enable certain portions of the page to be updated

asynchronously

� Do not call modify request/response after a dispatch from the same thread that
called the dispatch

� Do not attempt any intensive write operation from a timeout

� Timeout settings and AsyncContext start(Runnable) configured in the

administrative console

– Servers > Server Types > WebSphere application servers > server_name >
WebContainer Settings > web container

18	 © 2011 IBM Corporation

Here are some of the best practices when using Servlet 3.0. Do NOT mix ARD or RRD
with Servlet 3.0 asynchronous processing. They are two separate technologies that should
not be used together. You should avoid creating a new thread for each asynchronous
operation. Instead use a thread pool or the AsyncContext.start(Runnable) method.

You should use client side Ajax to enable certain portions of the page to be updated
asynchronously.

You should not modify the request or response after a dispatch from the same thread that
called the dispatch.

You should not attempt an intensive write from a timeout.

You should use the administrative console to configure asynchronous processing settings.

WASV8_Servlet_JSP_EL.ppt	 Page 18 of 39

File upload - multipart support

� Enable using @MultipartConfig on servlet

� Supports retrieval of multipart form data

� Write to disk on demand with Part.write

� Parts available by way of HttpServletRequest.getParts

� javax.servlet.context.tempdir servlet context attribute is the default location for writing
files

– Value can be changed

� Affects all apps on a server-wide basis

19	 © 2011 IBM Corporation

Servlet 3.0 also supports file upload and multipart servlets. You can enable multipart using
the MultipartConfig annotation. This allows the servlet to retrieve the multipart form data.
The parts of a request are available using the HttpServletRequest.getParts method and
you can write to disk using the Part.write method.

The default location for any file written to disk is the temp directory specified using the
javax.servlet.context.tempdir attribute.

WASV8_Servlet_JSP_EL.ppt	 Page 19 of 39

Configuring security constraints using annotations

� @ServletSecurity

– Alternative to security-constraint elements
– Value is inherited by subclasses per the @Inherited annotation
– Applies to all URL-patterns mapped to all the Servlets mapped to the class
– @HttpConstraint

• Applied to all HTTP protocol methods for which a corresponding

@HttpMethodConstraint does NOT occur

– @HttpMethodConstraint
• security constraints on specific HTTP protocol messages

� Constraints in web.xml override annotations

� Rules for mapping @ServletSecurity, @HttpConstraint and @HttpMethodConstraint to XML

20 © 2011 IBM Corporation

Servlet 3.0 also provides security configuration through the use of annotations.
@ServletSecurity can be used as an alternative to security-constraint elements. It’s value
is inherited by subclasses as per the @Inherited annotation. Also, this annotation applies
to all URL patterns mapped to the servlets with this annotation.

The HttpConstraint and HttpMethodConstraint annotations provides the security constraint
configuration on the HTTP protocol methods.

Constraints within the web.xml do override the annotations and there are rules for
mapping these annotations to the XML.

WASV8_Servlet_JSP_EL.ppt Page 20 of 39

© 2011 IBM Corporation 21

Security constraints code examples

Here are two examples of using the security annotations on a class.

WASV8_Servlet_JSP_EL.ppt Page 21 of 39

Specifying constraints programmatically

� Used within ServletContextListener
– Define security constraints to be applied to the mappings defined for a

ServletRegistration

Collection<String> setServletSecurity(ServletSecurityElement arg)

public class mySCL implements ServletContextListener {

...

public void contextInitialized(ServletContextEvent sce) {

ServletContext sc = sce.getServletContext();

ServletRegistration.Dynamic sr = sc.addServlet(...);

ServletSecurityElement sse = new ...;

sr.setServletSecurity(sse);

...

}

...

}

22 © 2011 IBM Corporation

You can also specify security constraints programmatically. When programmatically
adding a servlet, you can use the ServletSecurityElement to define the constraints for the
given servlet mappings.

WASV8_Servlet_JSP_EL.ppt Page 22 of 39

Security programmatic login/logout

� HttpServletRequest#login(String username, String password)
– Replacement for Form Based Login
– Application supervises credential collection

� HttpServletRequest#logout()
–	 provided to allow an application to reset the authentication state of a request without

requiring that authentication be bound to an Http Session

� HttpServletRequest#authenticate(HttpServletResponse res)
– Application initiates container mediated authentication from a resource not covered by

any auth constraints
– Application decides when authentication must occur

23	 © 2011 IBM Corporation

The HttpServletRequest has three new methods which allow for security integration. The
login method is a replacement for form based login and the application can supervise the
credential collection. The logout method allows the application to reset the authentication
state of a request without requiring that authentication be bound to a Http Session. The
authenticate method allows an application to initiate authentication from a resource that is
not covered by any authorization constraints which gives the application the control over
when authentication occurs.

WASV8_Servlet_JSP_EL.ppt	 Page 23 of 39

Session configuration

� web.xml or programmatically using javax.servlet.SessionCookieConfig

� Ability to configure a session tracking cookie as HttpOnly

� HttpOnly cookie attribute
– servletContext.getSessionCookieConfig().setHttpOnly(true)

• Cookies are not exposed to client side scripting code
• Prevents access to the cookie from client side scripting

– SessionCookieConfig.setSecure(boolean)

� SessionCookieConfig.setName(String)
– WebSphere Application Server administrators can disable programmatic session

configuration for cookies that can be shared between applications
– Safe to modify cookie configuration, if application uses a unique cookie name or path

• You can change the cookie path to the context root for all applications by way of
session management in the administrative console

24 © 2011 IBM Corporation

Servlet 3.0 provides additional session configuration options through the web.xml or
through configuration objects. The specification now fully supports the HttpOnly cookie
attribute. The session configuration can be used to change the attributes of the cookie
object including the name. While this is an option, you should proceed with caution as
some extended WebSphere behavior might rely on using the same cookie for all
applications. You also have the option to set the path for each application to that of its
context root.

WASV8_Servlet_JSP_EL.ppt Page 24 of 39

WebSphere Application Server value-adds

� WorkManager integration

� Dynamic cache servlet caching integration

� Servlet 3.0 PMI statistics

� Modifying web fragments in exploded jar

� Rational® Application Developer loose configuration support

25 © 2011 IBM Corporation

Some of the WebSphere Application Server adds are the WorkManager integration for
asynchronous processing, dynamic cache servlet caching integration, servlet 3.0
performance metric statistics, the ability to modify a web fragment in an exploded jar, and
support for rational application developer’s loose configuration.

WASV8_Servlet_JSP_EL.ppt Page 25 of 39

Servlet 3.0 Work manager integration

� Container Thread pool created for JEE

applications

– Uses async beans

� Bound to the JNDI namespace

� Context of the caller is inherited on the

work thread

– share asynchronous scope

� Application does NOT need to do anything

� Asynchronous task implements Runnable

� Gotcha
– Use of asynchronous beans within a

JPA extended persistence context is

not supported.

26	 © 2011 IBM Corporation

The Work Manager is a container thread pool created for JEE applications. It can use
async beans and is bound to the JNDI namespace. The context of the caller is inherited
on the work manager thread thus being in the same asynchronous scope. The application
does not need to do anything to take advantage of this integrated behavior.

� Advantages over thread pool
– Transactions
– Access to Java EE component

metadata
– Connection Management
– Security

WASV8_Servlet_JSP_EL.ppt	 Page 26 of 39

Dynamic cache integration: Improve performance

� Memory + disk offload replicated

distributed cache

– Servlet, Object, Command,
DistributedMap, WebServices

cache

� API considerations with Servlet 3.0
– Wraps ServletRequest and

ServletResponse objects with

its own dynamic cache wrapper objects

– Always the first asyncListener added to the ServletRequest
– Users of startAsync() should flush the response before calling this method
– Do not read/write to the request and response objects passed into addListener()
– Fragment that initiates startAsync has to consume-subfragments in cachespec.xml

� Use CacheMonitor application to inspect cache content and statistics

27	 © 2011 IBM Corporation

Dynamic cache integration will improve the performance of your application and can be
enabled through the web container administrative console. Objects, including servlet
output, can be cached to provide quicker response times for subsequent identical
requests. Dynamic cache does support caching of Servlet 3.0 asynchronous responses.

You should consider a few things when using dynamic caching with Servlet 3.0
asynchronous processing.

First, you should use the startAsync API that preserves filter wrappers and includes the
request and response objects.

You should not read or write to the request and response objects that are passed into an
AsyncListener.

You should always flush the response outputstream or writer before calling startAsync(...).
dynamic caching will force the JSP or servlet that initiates the asynchronous processing,
the one that calls startAsync, to consume the output of its sub fragments.

To view the cached response objects, you should install the CacheMonitor application that
is provided in the installableApps directory of the server.

WASV8_Servlet_JSP_EL.ppt	 Page 27 of 39

© 2011 IBM Corporat on28

WebApplication Servlet 3.0 PMI statistics

i

� PMI service enabled with
extended statistics set

� Start monitoring the server
WebApplication counters

� Enabled per servlet or in
aggregate

This slide shows some of the available Servlet 3.0 PMI statistics which can be enabled
using the Extended Statistics set. The statistics can be enabled either per servlet or in
aggregate.

WASV8_Servlet_JSP_EL.ppt	 Page 28 of 39

Overview of JSP2.2 and EL 2.2

� JSP 2.1 / EL 1.0 released as part of Java EE5

� Multiple maintenance releases

� JSP maintenance release includes schema changes
– requires new version

� JSP 2.2 / EL 2.2 released as part of Java EE

29 © 2011 IBM Corporation

Since JSP 2.1 and its EL 1.0 were released as part of Java EE 5, there have been two
additional Maintenance Releases (MRs) that contained some minor feature
enhancements, clarifications and removal of errors for each specification.

As part of the first MR, the EL specification was no longer a part of the JSP specification
and was re-versioned to 1.1. Then as part of Java EE 6, the MRs were folded back into
the specifications. Since there were schema changes in the MRs, the JSR 245 expert
group warranted a new point version of the specifications. JSP was then re-versioned to
2.2 and the EL was re-versioned to 2.2 also to keep them aligned.

WASV8_Servlet_JSP_EL.ppt Page 29 of 39

© 2011 IBM Corporation 30

JSP 2.2 changes

The JSP 2.2 changes include three new jsp-property-group sub-elements: buffer, default
content-type, and error-on-undeclared-namespace.

The Buffer element sets the size of the JSP writer. This can be adjusted for performance
reasons.

The Default-content-type element sets the default content type for a collection of
JavaServer Pages files that match the specified jsp-property-group.

The error-on-undeclared-namespace element makes it easier to debug namespace
issues.

There was also the addition of the omit attribute on a <jsp attribute> within a
<jsp:element> tag. This allows a JSP developer to omit certain attributes dynamically.

WASV8_Servlet_JSP_EL.ppt Page 30 of 39

EL 2.2 changes

� A few new methods on the ExpressionFactory to get a new Instance.
–	 This allows an EL to be plugged in and picked up by the container.

� A few new operators to call more complex method invocations.
–	 The [] and . operands along with () can be used to pass parameters and call specific

methods on expression objects.

� A few new methods to resolve and invoke a method on a base object
–	 javax.el.ELResolver.invoke – default implementation
–	 javax.el.BeanELResolver.invoke – implementation for a bean

� A new class and way to get a reference to a property on a base object
–	 The new class javax.el.ValueReference contains a reference to the base object and the

property.
–	 The new method javax.el.ValueExpression.getValueReference allows you to get access

to this new class representing the object.

31	 © 2011 IBM Corporation

The EL 2.2 changes include a few new methods on the ExpressionFactory to get a new
instance. This allows an EL implementation to be plugged in and picked up by the
container.

There are a few new operators introduced which allow you to call more complex method
invocations.

There is a new invoke method in the ELResolver and BeanELResolver classes which can
be used to resolve and invoke a method on a base object.

There is also a way to reference a property on a base object using the new
ValueReference class.

WASV8_Servlet_JSP_EL.ppt	 Page 31 of 39

© 2011 IBM Corporation32

Problem determinationProblem determination

Section

This section provides you with information that you should gather when investigating a
servlet, JSP, or EL problem.

WASV8_Servlet_JSP_EL.ppt Page 32 of 39

Problem determination Servlet 3.0

� Web container must-gather
– http://www-01.ibm.com/support/docview.wss?uid=swg21384592
– Trace string:

• Asynchronous processing only :com.ibm.ws.webcontainer.async=all=enabled
• More generic trace string :com.ibm.ws.webcontainer.*=all=enabled

33 © 2011 IBM Corporation

This page has information that will help you in problem determination for Servlet 3.0.

WASV8_Servlet_JSP_EL.ppt Page 33 of 39

Problem determination JSP 2.2 / EL 2.2

� JSP must-gather
– http://www-01.ibm.com/support/docview.wss?uid=swg21255205
– Trace string

• :com.ibm.ws.jsp=all=enabled

� EL 2.2
– Collect web container, JSP, and JSF must-gathers

– Additional JSF must-gather –

• http://www-01.ibm.com/support/docview.wss?uid=swg21198110

34 © 2011 IBM Corporation

This page has information that will help you in problem determination for JSP 2.2 and EL
2.2.

WASV8_Servlet_JSP_EL.ppt Page 34 of 39

© 2011 IBM Corporation35

SummarySummary

Section

This section provides a summary of what you have learned in this presentation.

WASV8_Servlet_JSP_EL.ppt Page 35 of 39

Summary

� Servlet 3.0, JSP 2.2, and EL 2.2 are fully supported in IBM WebSphere Application Server
V8.0

36 © 2011 IBM Corporation

In short, Servlet 3.0, JSP 2.2, and EL 2.2 are fully supported by IBM WebSphere
Application Server version 8.0.

WASV8_Servlet_JSP_EL.ppt Page 36 of 39

References

� Servlet 3.0, JSP 2.2, and EL 2.2 specifications

� Servlet 3.0 information center Links
� http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/cweb_servlet30configmethods.html

� http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/cweb_servlet30configmethods.html

� http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rweb_consid.html

� http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/cweb_webfragments.html

� http://bit.ly/gmtm2E

37 © 2011 IBM Corporation

Here are some references for Servlet 3.0.

WASV8_Servlet_JSP_EL.ppt Page 37 of 39

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASV8_Servlet_JSP_EL.ppt

This module is also available in PDF format at: ../WASV8_Servlet_JSP_EL.pdf

38 © 2011 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASV8_Servlet_JSP_EL.ppt Page 38 of 39

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, Rational, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM
trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

39 ©© 22001111 IIBBMM CCoorrppoorraattiioonn

WASV8_Servlet_JSP_EL.ppt Page 39 of 39

