

© 2011 IBM Corporation

IBM WebSphere Application Server
Communications Enabled Applications

web services development

The Communications Enabled Applications feature of WebSphere Application Server
Feature allows you to access telephony services with web service clients. This
presentation goes through the steps needed to create and deploy an application that can
manage telephone calls using the web services interface, including how to configure the
application server. Formerly, this capability required building SIP servlets and a detailed
understanding of the SIP specification. This functionality greatly reduces the amount of
code required.

WASv8_CEA_WebServicesDevelopment.ppt Page 1 of 37

Agenda

� Manage telephone calls using a web services client

� Configuration

� Development

� web service sample

� Configuring external web service providers to use the Communications Enabled Applications
(CEA) functionality

2 Web services development	 © 2011 IBM Corporation

This presentation covers managing telephone calls using the Communications Enabled
Applications (CEA) web service, configuring your server and system, and developing an
application that uses the CEA web service. It then covers the web service sample that is
included in the CEA samples package that you can download from the WebSphere
Application Server Samples site. The presentation ends with a brief overview of how to
configure external web service providers to use the CEA functionality.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 2 of 37

© 2011 IBM Corporation3 Web services development

Manage telephone calls using a web servicesManage telephone calls using a web services
clientclient

Section

First is a brief overview of the Communications Enabled Applications (CEA) web service
and an overview of the steps needed to create and deploy an application that can manage
telephone calls using the web services interface.

WASv8_CEA_WebServicesDevelopment.ppt Page 3 of 37

CEA web service (1 of 2)

� The Communications Enabled Applications (CEA) feature of WebSphere Application Server
allows you to integrate telephony services into new and existing applications using its web
services interface

� The CEA capability lets you:
– Open a session to start monitoring a telephone
– Get notifications about telephone activity
– Make telephone calls between two phones
– End an active telephone call
– Close a session to stop monitoring a telephone

4 Web services development	 © 2011 IBM Corporation

The Communications Enabled Applications feature of WebSphere Application Server
allows you to integrate telephony services into new and existing applications using its web
services interface. This functionality lets you open a session to start monitoring a
telephone and get notifications about telephone activity. You can also make telephone
calls between two telephones, end an active telephone call, and close a session to stop
monitoring a telephone.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 4 of 37

CEA web service (2 of 2)

� The CEA web service
– Communicates over the HTTP protocol used on the Web
– XML messages follow the SOAP standard
– Description of operations offered by the service are written in web services Description

Language (WSDL)

5 Web services development © 2011 IBM Corporation

A web service is designed to support interaction over a network and is frequently just web
application programming interfaces that can be accessed over a network, and run on a
remote system hosting the requested services. A typical web service application
communicates over the HTTP protocol used on the Web. Within the Communications
Enabled Applications feature, a Web service uses XML messages that follow the SOAP
standard where there is a machine-readable description of the operations offered by the
service written in the web services Description Language (WSDL). The WSDL file can be
interpreted by Web service tools to generate the Web services client code needed to
communicate with the Web service. As a result, an application developer need only call
the correct set of Java APIs to manage telephone calls in an application.

WASv8_CEA_WebServicesDevelopment.ppt Page 5 of 37

Steps to accessing telephony services with WS

� Enable the CEA system application

� Install IP-PBX

� Configure the IP-PBX location

� Restart your server

� Develop an application

� Install and start your application

6 Web services development © 2011 IBM Corporation

In order to access telephony services with web services you need to follow these steps.
First, enable the CEA system application in your WebSphere Application Server. Second,
install and configure your IP-PBX and restart your server. Then develop your application
and install and start your application.

WASv8_CEA_WebServicesDevelopment.ppt Page 6 of 37

© 2011 IBM Corporation7 Web services development

ConfigurationConfiguration

Section

The next few slides will walk through the configuration steps that need to be done in order
to access telephony services with web services.

WASv8_CEA_WebServicesDevelopment.ppt Page 7 of 37

Enable CEA system application

� Update the configuration for each server running communications enabled applications
– In the administrative console, click Servers > Server Types > WebSphere application

servers > server_name > Communications Enabled Applications (CEA)
– Ensure the check box labeled Enable communications service is checked

8 Web services development © 2011 IBM Corporation

First, enable the CEA system application. For each server running communications
enabled applications, update the configuration to ensure that communications service is
enabled. In the administrative console, click Servers > Server Types > WebSphere
application servers > server_name > Communications Enabled Applications (CEA).
Ensure the check box labeled Enable communications service is checked as shown
here.

WASv8_CEA_WebServicesDevelopment.ppt Page 8 of 37

IP-PBX

� The CEA capability requires an IP private branch exchange (PBX) as part of your infrastructure

� Install and start the sample IP-PBX application (commsvc.pbx.ear) included in the CEA samples package
available on the WebSphere Application Server Samples site

– http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=wasndmp&topic=welcome_samples

� Along with the sample IP-PBX, two soft phones are needed to test the application

9 Web services development	 © 2011 IBM Corporation

The Communications Enabled Applications capability requires an IP private branch
exchange (PBX) as part of your infrastructure. An IP-PBX is a business telephone system
designed to deliver voice over a data network and interoperate with the Public Switched
Telephone Network (PSTN). A sample IP-PBX application is included in the application
server installation. The sample IP-PBX is in the form of an application enterprise archive
(EAR) file and is for test purposes only. The details of installing and configuring a vendor-
specific IP-PBX are not provided. The IP-PBX must support the ECMA TR/87 protocol.
Along with the sample IP-PBX, two soft phones are needed to test the application.

To set up a sample IP-PBX application that you can use for unit testing in the absence of
an official PBX, start the application server where you deploy the sample IP-PBX
application. Then install the SIP IP-PBX sample application. Then start the application.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 9 of 37

Configure the IP-PBX location

� In the administrative console, click Servers > Server
Types > WebSphere application servers > server_name >
Communications Enabled Applications (CEA)

� Use the CEA settings page to select the Use SIP CTI
(ECMA TR/87) gateway for telephony access option and
configure these fields:

– Host name or IP address
– Port
– Protocol (TCP)
– Superuser name

� Restart the application server

10 Web services development	 © 2011 IBM Corporation

After installing and starting the IP-PBX, configure the IP-PBX location. In the
administrative console for the server where the Communications Enabled Applications
(CEA) system application is running, click Servers > Server Types > WebSphere
application servers > server_name > Communications Enabled Applications (CEA). On the
CEA settings page, select “Use SIP CTI (ECMA TR/87) gateway for telephony access”
and configure the host name or IP address, port, protocol, and superuser name fields. Be
sure to set the fields based on the server that is running the PBX application.

Use the host name field to provide the fully-qualified host name or IP address of the SIP
CTI gateway that the CEA services connect to; the default is localhost. The port field
specifies the port number of the SIP CTI gateway for connection communication services.
For the TCP Protocol, the port is the SIP_DEFAULTHOST for the server that is running
the PBX application; the default is 5060. If you are not using the default port then enter
your port number here. In the protocol field, provide the protocol to use when connecting
to the SIP CTI gateway; the default is TCP. The superuser name field specifies the name
that is used when opening a new session to the gateway; the default is root. Be sure to
restart the application server.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 10 of 37

© 2011 IBM Corporation11 Web services development

DevelopmentDevelopment

Section

Now that you have your application server configured you can now integrate telephony
services into new and existing applications.

WASv8_CEA_WebServicesDevelopment.ppt Page 11 of 37

Development process

� Obtain WSDL files and associated schema file

� Generate through JAX-WS a client using ControllerService.wsdl

� Write code to call methods against the web service client

� Adding notification
– Generate through JAX-WS a service implementation class using CeaNotificationConsumer.wsdl
– Implement the notify method to receive and process notification messages

� The rest is handled by the runtime

12 Web services development © 2011 IBM Corporation

The development process is outlined here. In communications enabled applications, a web
service uses XML messages that follow the SOAP standard where there is a machine-
readable description of the operations offered by the service written in WSDL. The WSDL
file can be interpreted by web service tools to generate the web services client code
needed to communicate with the web service. The Communications Enabled Applications
(CEA) feature provides two WSDL descriptions of the operations offered by the Web
service. You will first obtain the WSDL files ControllerService.wsdl and
CeaNotification.wsdl and associated schema files. The ControllerService.wsdl file
generates through JAX-WS the Web services client code needed to communicate with the
Web service. Generated files include openSession, closeSession, makeCall, and endCall.
As a result, you need only call the correct set of Java APIs to manage telephone calls in
an application. Your code should include method calls to open a session, make a call, end
a call, and close a session.

The CEA Web service support is built on WS-Notification. The
CeaNotificationConsumer.wsdl follows WS-Notification allowing the CEA Web service to
participate in publish and subscribe messaging patterns. The WSDL describes the
consumer service. The CeaNotificationConsumer.wsdl file generates through JAX-WS a
service implementation class, CeaNotificationConsumerSOAPImpl.java and a
NotificationConsumer.java file. As a result, you just need to Implement the notify() method
to receive and process notification messages, notifying you of the call status. The rest is
handled by the runtime; neither the client code nor the provider code are required to write
or parse SOAP messages.

WASv8_CEA_WebServicesDevelopment.ppt Page 12 of 37

Obtain the WSDL files

� Point your web browser to
– http://host:port/commsvc.rest/ControllerService?wsdl
– http://host:port/commsvc.rest/CeaNotificationConsumer?wsdl
– WSDL file created in the file system during installation is read by the web services

infrastructure

� Save the file and import it into your application

� Import associated schema file
– http://host:port/commsvc.rest/ControllerService/WEB

INF/wsdl/ControllerService_schema1.xsd

13 Web services development © 2011 IBM Corporation

The Communications Enabled Applications (CEA) feature includes WSDL descriptions of
the operations offered by the web service. In order to obtain the WSDL files, point your
web browser to the two URLs shown here.

In these URLs, “host” is the IP address or host name on which the Web container is
listening, and “port” is the port number on which the Web container is listening.

When you do this, the WSDL file created in the file system during installation is read by
the web services infrastructure, and the correct host and port are configured in the WSDL
file sent to the browser. Save the file and import it into your application. You will also need
to import the associated schema file, which is the last URL listed on this slide.

WASv8_CEA_WebServicesDevelopment.ppt Page 13 of 37

© 2011 IBM Corporation 14 Web services development

ControllerService.wsdl

The ControllerService.wsdl file contains description of the operations offered by the
service. Using web service tools, you can generate the web services client code needed to
communicate with the web service. Generated files include openSession, makeCall,
endCall, and closeSession. On this slide is a visual display of the WSDL file.

WASv8_CEA_WebServicesDevelopment.ppt Page 14 of 37

© 2011 IBM Corporation 15 Web services development

CeaNotificationConsumer.wsdl

The CeaNotificationConsumer.wsdl follows WS-Notification, allowing the CEA web service
to participate in publish and subscribe messaging patterns. The WSDL describes the
consumer service. The CeaNotificationConsumer.wsdl file generates through JAX-WS a
service implementation class, CeaNotificationConsumerSOAPImpl.java and a
NotificationConsumer.java file. As a result, you just need to Implement the notify() method
to receive and process notification messages, notifying you of the call status. On this slide
is a partial visual display of the WSDL file.

WASv8_CEA_WebServicesDevelopment.ppt Page 15 of 37

Generating Java artifacts

� JAX-WS tools support generating Java artifacts when starting with a WSDL file
– Create a service client from a WSDL
– Create a skeleton bean from a WSDL

� Rational Application Developer has the web services tools that use the WebSphere JAX-WS
runtime environment

� Command line tools available

16 Web services development	 © 2011 IBM Corporation

The Java API for XML web Services (JAX-WS) is a Java programming language API for
creating web services. JAX-WS uses annotations to simplify the development and
deployment of web service clients and endpoints. JAX-WS represents remote procedure
calls or messages using XML-based protocols such as SOAP, but hides SOAP's innate
complexity behind a Java-based API. Developers use this API to define methods, then
code one or more classes to implement those methods and leave the communication
details to the underlying JAX-WS API. Clients create a local proxy to represent a service,
then invoke methods on the proxy. The JAX-WS runtime system converts API calls and
matching replies to and from SOAP messages.

JAX-WS tools support generating Java artifacts when starting with a WSDL file. You can
create a service client from a WSDL file. Web service clients are created from a WSDL
document which describes where the Web service is deployed and what operations this
service provides. You can also create a skeleton bean from a WSDL file. The skeleton
bean contains a set of methods that correspond to the operations described in the WSDL
document. When the bean is created, each method has a trivial implementation that you
replace by editing the bean.

Rational Application Developer has the Web services tools that use the WebSphere JAX
WS runtime environment. There are also command line tools available.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 16 of 37

Rational Application Developer web service wizard

� Switch to the Java EE perspective

� Right click your WSDL file
– choose web Services > Generate client or
– Generate Java bean skeleton

� Select the stages of web service client to Develop, select
your server, runtime, and service project

� For Generate Java bean skeleton: select Top down Java
bean web service as your web service type

� Files are generated

17 Web services development	 © 2011 IBM Corporation

Using the WebSphere JAX-WS runtime environment Rational Application Developer has
the web services tools that allow you to either create a service client from a WSDL file or
create a skeleton bean from a WSDL file. In order to use the web service wizard in
Rational Application Developer follow these steps. First switch to the Java EE perspective
(Window > Open Perspective > Java EE). Import your WSDL file and associated schema
file. Right click your WSDL file and choose web services > Generate client or Generate
Java bean skeleton. For ControllerService.wsdl choose generate client and for
CeaNotificationConsumer.wsdl choose generate Java bean skeleton.

On the web services page select the stages of web service development that you want to
complete using the slider. This will set several default values on the remaining wizard
panels. You will want to set the slider to develop, which will develop the WSDL definition
and implementation of the Web service. This includes such tasks as creating the modules
that will contain the generated code, WSDL files, deployment descriptors, and Java files
when appropriate. Select your server, runtime, and service project.

If creating a Java bean skeleton from a WSDL be sure to select Top down Java bean Web
service as your Web service type. Top-down Web services development involves creating
a Web service from a WSDL file. Go through the rest of wizard selecting other details and
click Finish. Your Java files will then be generated.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 17 of 37

Command line

� wsimport (top down) generates:
– Service endpoint interface (SEI)
– Service class
– Exception class that is mapped from the wsdl:fault class (if any)
– Java Architecture for XML Binding (JAXB) generated type values

� <WAS_HOME>\bin\wsimport -keep -b <WAS_HOME>\util\ibm-wsn-jaxb.xml -wsdllocation <WSDL_LOC>
<WSDL_FILE>

– Example:
• C:\opt7\ibm\websphere\appserver\bin\wsimport -keep -b

C:\opt7\ibm\websphere\appserver\util\ibm-wsn-jaxb.xml -wsdllocation "WEB
INF/wsdl/CeaNotificationConsumer.wsdl" CeaNotificationConsumer.wsdl

18 Web services development	 © 2011 IBM Corporation

There are two main command line tools for working with JAX-WS to develop web services.
WSImport is a top down development tool that will create the necessary beans, service
client, service endpoint interface, and wrappers from a provided WSDL file. The WSGen
command will create a WSDL document and wrappers when needed from Java code with
the proper web service annotations.

Use wsimport, to process a WSDL file and generate portable Java artifacts that are used
to create a web service client. Using the wsimport tool you can create Service endpoint
interface (SEI), and Service class. You also create the exception class that is mapped
from the wsdl:fault class (if any), and Java Architecture for XML Binding (JAXB) generated
type values which are Java classes mapped from XML schema types. Use the -verbose
option to see a list of generated files when you run the command. Use the -keep option to
keep generated Java files. Use the -wsdlLocation option to specify the location of the
WSDL file. Use the -b option if you are using WSDL or schema customizations to specify
external binding files that contain your customizations. You can customize the bindings in
your WSDL file to enable asynchronous mappings or attachments.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 18 of 37

Generated files

� ControllerService.wsdl
– web services client code � CeaNotificationConsumer.wsdl

– Java service implementation class and other
generated Java files

19 Web services development © 2011 IBM Corporation

This picture shows the web services client code that was generated from the
ControllerService.wsdl file and the Java service implementation class and other oasis files
that were generated from the CeaNotificationConsumer.wsdl file.

WASv8_CEA_WebServicesDevelopment.ppt Page 19 of 37

ControllerService.java

@WebServiceClient(name = "ControllerService", targetNamespace = "http://impl.webservice.commsvc.ws.ibm.com/",
wsdlLocation = "WEB-INF/wsdl/ControllerService.wsdl")

public class ControllerService

extends Service

{

…

@WebEndpoint(name = "ControllerPort")

public Controller getControllerPort() {

20 Web services development © 2011 IBM Corporation

JAX-WS uses annotations to simplify the development and deployment of web service
clients and endpoints. Here is some of the code from the generated Java file
ControllerService.java. This file was generated from ControllerService.wsdl. Notice the
annotations. The @WebServiceClient is used to annotate a generated service interface.
The information specified in this annotation is sufficient to uniquely identify a wsdl:service
element inside a WSDL document. This wsdl:service element represents the web service
for which the generated service interface provides a client view. The @WebEndpoint is
used to annotate the getPortName() methods of a generated service interface. The
information specified in this annotation is sufficient to uniquely identify a wsdl:port element
inside a wsdl:service.

WASv8_CEA_WebServicesDevelopment.ppt Page 20 of 37

What to code

� Write client side code to call methods against the web service client

� For notification
– Implement the notify method to receive and process notification messages

• Notify method is in CeaNotificationConsumerSOAPImpl.java
– Add client side code to set the NotifyCallback in the web service request object
– Create a method to update the telephone session with call status information that arrived

in a WS-Notification

21 Web services development © 2011 IBM Corporation

After generating your Java code from the WSDL files you will write client side code to call
methods against the web service client. You will want to write client code to open a
session, make a call, end a call, and close a session. For notification you will need to
implement the notify method to receive and process notification messages. The notify()
method is in the CeaNotificationConsumerSOAPImpl.java file. After coding the notify
method you will want to add client side code to set the NotifyCallback in the web service
request object. You will also want to create a method to update the telephone session with
call status information that arrived in a WS-Notification.

WASv8_CEA_WebServicesDevelopment.ppt Page 21 of 37

Sample code

public accessWebService () {

// Access the web services client

controllerService = ControllerService();

if (controllerService!= null) {

controllerPort = controllerService.getControllerPort();

} … }

// Open a session to monitor/control a phone

public void openSession(String addressOfRecord, String notifyCallback) {

// Build a request object

CommWsRequest wsRequest = new CommWsRequest();

wsRequest.setAddressOfRecord(addressOfRecord);

wsRequest.setNotifyCallback(notifyCallback);

W3CEndpointReference EPR = controllerPort.openSession(wsRequest);

controllerPortWithEPR = EPR.getPort(Controller.class, new AddressFeature(true));

}

22 Web services development © 2011 IBM Corporation

Here is some sample client code. This code shows a sample accessWebService() method
that gets access to the web service client. Also, shown here is a sample openSession()
method. openSession() is called in order to start monitoring a telephone. In this method
you will first build the web service request object, then access the web service, and call
the web service to open the session. You will use the endpoint reference (EPR) to create
a new object to make Web service calls on. The EPR includes information that allows the
Web service to map requests to this session. The EPR must be used in all other APIs
called related to the session monitoring that telephone. The EPR is critical for multiple
reasons. First, it allows for Web service interface to be simpler eliminating the need to
pass a state object as a parameter in all follow up requests. The EPR itself has enough
information for the Web service to track it. It is also used in a clustered environment to
ensure follow on requests go back to the same container monitoring the telephone.

Notice that notifyCallback is set. This is the URL needed to contact in order to trigger a call
notification (WS-Notification). For the URL the host and port must be where the Web
service client resides. The context root much match that of the WAR including this Web
services client, and the name at the end must match the service name in the
CeaNotificationConsumer.wsdl.

WASv8_CEA_WebServicesDevelopment.ppt Page 22 of 37

Sample code continued

// Make a call

public void makeCall(String calleeAddressOfRecord) {

// Build a request object

CommWsRequest wsRequest = new CommWsRequest();

wsRequest.setPeerAddressOfrecord(calleeAddressOfRecord);

// Make the call, using the EPR returned in openSession()

controllerPortWithEPR.makeCall(wsRequest);

}

// End an active call

public void endCall() {

// End the call, using the EPR returned in openSession()

controllerPortWithEPR.endCall(wsRequest);

}

// Close the session monitoring the phone

public void closeSession() {

// Close the session, using the EPR returned in openSession()

controllerPortWithEPR.closeSession();

}

23 Web services development © 2011 IBM Corporation

This is sample code to make a call, end a call, and close a session. In this code, the callee
is the person being called. Note the use of the EPR in each of the methods.

WASv8_CEA_WebServicesDevelopment.ppt Page 23 of 37

Implement notify method

� Extract the list of notification messages

� Loop through the messages

� Get the message content as a DOM Element

� Build a CallStatus object out of the notification

� Loop through and match the text to a member of the CallStatus object and set it

� Update the status of the associated client state object

24 Web services development © 2011 IBM Corporation

For notification you will need to implement the notify() method to receive and process
notification messages. The notify() method is in the
CeaNotificationConsumerSOAPImpl.java file. These steps list what a sample notify
method should contain. First you extract the list of notification messages. Next you loop
through the messages and get the message content as a DOM Element. You then build a
CallStatus object out of the notification by looping through and matching the text to a
member of the CallStatus object and setting it. Finally, you update the status of the
associated client state object. The notify() method is called automatically by the server's
notification broker when a notification takes place.

WASv8_CEA_WebServicesDevelopment.ppt Page 24 of 37

New application

� Bundle up your application that includes JAX-WS “annotated” classes, WSDL, XSD schema, and any
client side code you created

� Install your sample

� Take the application-specific action that triggers the call to the web service API

� In order to open a session and monitor a telephone for activity, you need to provide an address of record
for your telephone

– This can be a URI (uniform resource indicator) of a telephone
• A SIP URI, for example, has the format of sip:username@serviceprovider, which represents the

address of your telephone on the Internet

� Answer the source telephone when it rings

� Answer the destination telephone when it rings

25 Web services development	 © 2011 IBM Corporation

After developing your application, bundle up your application that includes JAX-WS
“annotated” classes, WSDL, XSD schema, and any client side code you created. Install
your sample in your application server. Take the application-specific action that triggers
the call to the web service API. In order to open a session and monitor a telephone for
activity, you need to provide an address of record for your telephone. This can be a URI
(uniform resource indicator) of a telephone. A SIP URI, for example, has the format of
sip:username@serviceprovider, which represents the address of your telephone on the
Internet. Answer the source telephone when it rings and answer the destination telephone
when it rings.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 25 of 37

© 2011 IBM Corporation26 Web services development

web service sampleweb service sample

Section

The next two slides show the web service sample included in the Communications
Enabled Applications (CEA) samples package that you can download from the
WebSphere Application Server Samples site.

WASv8_CEA_WebServicesDevelopment.ppt Page 26 of 37

web services sample

� Download the sample:
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=matt&product=was-nd-mp&topic=welcome_samples

� Install the EAR file: <WAS_HOME>\feature_packs\cea\samples\webservice.sample\commsvc.ws.sample.ear

� Visit:
http://host:port/commsvc.ws.sample/CommWebServiceServlet

27 Web services development	 © 2011 IBM Corporation

A web services sample is included in the Communications Enabled Applications (CEA)
samples package that you can download from the WebSphere Application Server
Samples site. You can view the code and see the generated Java files and sample client
side code. In order to run the web service sample, you will need to install the sample. After
installing and starting the application, browse to the URL shown here. In order to open a
session and monitor a telephone for activity, you need to provide an address of record for
your telephone. This can be a URI of a telephone. Enter the URI value in the telephone
address of record field and select Open session. Remember to complete the configuration
steps earlier in the presentation before running this sample.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 27 of 37

© 2011 IBM Corporation 28 Web services development

Making a call

1 2

3 4

Starting in the left corner you will see that there is not a call going on yet, but your address
of record is filled in. Next enter a URI for the callee - the number that you want to call - and
click “Make call”. At the top right you will now see that the status is updated showing the
caller, callee and the call status stating that the call was delivered. On the bottom left after
both the phones are answered and after refreshing the status the call status will now state
that the call is established. Finally, if you click “End the call,” you will see on the bottom
right that the call status is cleared.

WASv8_CEA_WebServicesDevelopment.ppt Page 28 of 37

© 2011 IBM Corporation29 Web services development

Configuring external web service providersConfiguring external web service providers

Section

This section shows the steps needed to configure an external web service provider.

WASv8_CEA_WebServicesDevelopment.ppt Page 29 of 37

Using IP-PBX

� The CEA feature provides web telephony services in the form of REST APIs in addition to a
web service

� When invoked, a common core technology interacts with an IP-PBX to monitor and control
phones

– This core technology can be substituted with an external web service to manage all
communications with the IP-PBX

30 Web services development	 © 2011 IBM Corporation

The Communications Enabled Applications feature provides web telephony services in the
form of REST APIs in addition to a web service. When invoked, a common core
technology interacts with an IP-PBX to monitor and control telephones. This core
technology can be substituted with an external web service to manage all communications
with the IP-PBX.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 30 of 37

External web service provider

� If external provider creates a web service that supports the CEA WSDL, application can be
configured to use that provider

– External web service provider must be deployed and running on a server accessible
from the application server

• WSDL file for the external service must be known and accessible using an HTTP
request

– This configuration replaces the need for the existing CEA web service, but the existing
service can be used for REST requests

31 Web services development	 © 2011 IBM Corporation

The Communications Enabled Applications (CEA) web service interface is described by a
WSDL file. If an external provider creates a web service that supports this WSDL, then the
communications enabled application can be configured to use that provider. To use an
external web service provider, it must be deployed and running on a server accessible
from the application server. The location of the WSDL file for the external service must be
known and accessible by using an HTTP request. Like the setup required when using the
web service provided by the CEA feature, you must start and configure an IP private
branch exchange (PBX) as well.

This configuration replaces the need for the existing CEA Web service, but the existing
service can be used for REST requests. As REST requests are received, the application
server uses a Web services client to communicate with the external Web service provider.
The external Web service provider manages all communications with the IP-PBX.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 31 of 37

Configure the external web service

� Install and configure the external web service

� Configure the location of the vendor web service WSDL
– In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > Communications Enabled Applications (CEA)
– Under Telephony access method, select the Use a third-party web services provider for telephony

access option
– Enter the HTTP URL of the third-party WSDL
– Save the settings and restart the server so that the new changes are applied to the run time

32 Web services development © 2011 IBM Corporation

You will need to install and configure the external web service. For example, if the external
web service is delivered as an application that is deployed on WebSphere Application
Server, you must install and configure the service on the local server. Configure the
location of the vendor web service WSDL. In the administrative console, click Servers >
Server Types > WebSphere application servers > server_name > Communications
Enabled Applications (CEA). Under Telephony access method, select “Use a third-party
web services provider for telephony access”. Enter the URL of the third-party WSDL in the
“Third-party Web services provider's WSDL” field. Save the settings and restart the server
so that the new changes are applied to the run time.

WASv8_CEA_WebServicesDevelopment.ppt Page 32 of 37

© 2011 IBM Corporation33 Web services development

Summary and referencesSummary and references

Section

This section provides a summary and references.

WASv8_CEA_WebServicesDevelopment.ppt Page 33 of 37

Summary

� The Communications Enabled Applications feature of WebSphere Application Server lets
you integrate telephony services into new and existing applications using the web services
interface

– Obtain WSDL files and associated schema file
– Generate client code using ControllerService.wsdl
– Write code to call methods against the web service client
– Add Notification

� web services sample

� Configure external web service providers

34 Web services development	 © 2011 IBM Corporation

This presentation talked about managing telephone calls using the Communications
Enabled Applications (CEA) web service, configuring your server and system, and
developing an application that uses the CEA web service. When developing an
application, the main steps are to obtain the WSDL files and associated schema files, then
generate the Java code. With the generated Java code you can just write client code to
call methods against the web service client. The CEA web service is based on WS-
Notification. After you generate the code needed for notification, you have to code the
notify() method. The CEA feature includes a Web service sample; be sure to view the
code and run the sample. You can also use an external Web service provider to use
communications enabled applications. The external Web service provider’s role is to
manage all communications with the IP-PBX.

WASv8_CEA_WebServicesDevelopment.ppt	 Page 34 of 37

References

� web service
– http://www.w3.org/TR/ws-arch/

� SOAP
– http://www.w3.org/TR/soap/

� WSDL
– http://www.w3.org/TR/wsdl

� WS-Notification
– http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

� JAX-WS
– http://www.jcp.org/en/jsr/detail?id=224

� OASIS
– http://www.oasis-open.org/

35 Web services development © 2011 IBM Corporation

This slide lists some useful references.

WASv8_CEA_WebServicesDevelopment.ppt Page 35 of 37

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASv8_CEA_WebServicesDevelopment.ppt

This module is also available in PDF format at: ../WASv8_CEA_WebServicesDevelopment.pdf

36 Web services development © 2011 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv8_CEA_WebServicesDevelopment.ppt Page 36 of 37

 TTrraaddeemmaarrkkss,, ddiissccllaaiimmeerr,, aanndd ccooppyyrriigghhtt iinnffoorrmmaattiioonn

IBM, the IBM logo, ibm.com, Rational, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM
trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

37 © 2011 IBM Corporation

WASv8_CEA_WebServicesDevelopment.ppt Page 37 of 37

