

© 2011 IBM Corporation

IBM WebSphere Application Server V8

Enterprise Java Beans (EJB) 3.1

This presentation describes support for Enterprise Java Beans 3.1 in IBM WebSphere
Application Server V8.

WASV8_EJB31.ppt Page 1 of 32

© 2011 IBM Corporation 2 Enterprise Java Beans (EJB) 3.1

Table of contents

� EJB 3.1 overview

� Summary

� References

An overview of the enhancements to the EJB specification is provided, along with
references.

WASV8_EJB31.ppt Page 2 of 32

© 2011 IBM Corporation3 Enterprise Java Beans (EJB) 3.1

EJB 3.1 overviewEJB 3.1 overview

Section

An overview of the following enhancements to the EJB specification is provided, as

supported in WebSphere Application Server V8:

The No-Interface local view, asynchronous session bean invocations, singleton session

beans, calendar based timers, automatic timer creation, non-persistent timers, an

embeddable EJB container, and packaging of EJBs in WAR files.

WASV8_EJB31.ppt Page 3 of 32

No-interface local view (1 of 2)

� Session beans can now be exposed to clients through a no-interface view

� Supported when:
–	 The bean does not expose any other client views (Local, Remote, 2.x Remote Home,

2.x Local Home, web service) and its implements clause is empty
–	 The bean exposes at least one other client view and it has @LocalBean annotation on

the bean class or in the deployment descriptor

4 Enterprise Java Beans (EJB) 3.1	 © 2011 IBM Corporation

The No-Interface local view is a continuation of the ease of use of enhancements that

were made in the EJB 3.0 specification. In the last release, the requirement that session

beans extend framework classes was dropped, and now the requirement to provide an

interface has also been dropped. The No-Interface view allows the session bean

implementation class to be exposed to local clients, similar to a local business interface.

All public methods of the session bean implementation class are exposed as local

business methods.

A session bean automatically receives a No-Interface view when it has not been

configured to have any other client view and the implements clause is empty.

In addition, a session bean may be explicitly configured to have a No-Interface view by

either specifying the LocalBean annotation or the equivalent in the deployment descriptor.

With this feature, the EJB programming model now allows a “plain old Java object” or

POJO to be configured as an enterprise bean, with all of the qualities of service provided

by the container.

WASV8_EJB31.ppt	 Page 4 of 32

No-interface local view (2 of 2)

� Session bean with No-Interface view because no declared interfaces
@Stateless

Public class CartBean

� Session bean with No-Interface view using @LocalBean
@Stateless

@LocalBean

@Remote (cart.class)

public class CartBean implements Cart

5 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

Provided are examples that demonstrate the two techniques of configuring a No-Interface

view.

In the first example, the stateless session bean does not implement any interfaces, nor

does it provide any business or component interfaces. Therefore the CartBean class is

exposed as a No-Interface view.

For the second example, the LocalBean annotation has been specified. The stateless

session bean, CartBean, will have two client views: the remote business interface, Cart,

and a No-Interface view.

Also note, that although the No-Interface view is effectively exposing the bean

implementation class as a local business interface, it does not prevent the session bean

from using both features together. A session bean may be configured with both a No-

Interface view and local business interfaces.

WASV8_EJB31.ppt Page 5 of 32

Asynchronous session bean invocations

� Allows EJB methods to run asynchronously

� Improves performance and increases scalability

� Has two modes:
– Fire and forget
– Fire and return results

6 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

The EJB specification has now defined a mechanism to declare that a business method is to run

asynchronously to the client, whether the client is local or remote. By default, business methods will continue

to run synchronously.

This new feature is aimed at improving performance and scalability by allowing a client request to be

processed on multiple threads. The client may call multiple asynchronous EJB methods, to process work

concurrently on multiple threads, and continue processing in the client thread.

There are two forms of asynchronous EJB method invocations:

First, “fire and forget”. When using “fire and forget”, the asynchronous method is declared to have a void

return type, and the application client has no way of knowing when or even if the asynchronous method

completes. “Fire and forget” is useful for scenarios where there is some ‘nice to have’ function to be

performed, but it is unimportant if it actually completes. By using an asynchronous request in this scenario,

the performance of the important processing can be improved on the main thread, while the “nice to have”

function runs concurrently on a separate thread.

Second, “fire and return results”. When using “fire and return results”, the asynchronous method is declared

to have a Future return type. An instance of Future is returned to the application client immediately, before

the asynchronous method runs, and the client can then use the Future to check on the status of the

asynchronous request and eventually obtain the result.

Note: For Asynchronous methods, only transaction required, transaction requires new, or transaction not

supported are supported. The asynchronous method will always run under a different transaction context

than that of the client.

The transaction service context and the activity session service context are not propagated from the client to

the asynchronous thread. The security context, and all of the WebSphere Application Server extension

contexts, such as work area, internationalization, and so on, are propagated for use on the execution thread.

WASV8_EJB31.ppt Page 6 of 32

Asynchronous session bean invocations – fire and forget

public interface Email

{

public void sendEmail (String name, String message);

}

@Stateless

@Local(Email.class)

public class CalculatorBean {

@Asynchronous

public void sendEmail (String name, String message);

{

// ... Send email.;

}

7 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

Here is an example of an asynchronous local business method using the “fire and forget”
semantics.

Anytime a client calls the ‘sendEmail’ method on the CalculatorBean, control is returned
immediately to the client, and the ‘sendEmail’ method is submitted to run concurrently on
another thread.

WASV8_EJB31.ppt Page 7 of 32

© 2011 IBM Corporation 8 Enterprise Java Beans (EJB) 3.1

Asynchronous session bean invocations – fire and return results
(1 of 2)

Here is an example of an asynchronous local business method using the “fire and return
results” semantics.

When a client calls the ‘performCalculation’ method on the CalculatorBean, an instance of
Future is returned immediately to the client, and the ‘performCalculation’ method is
submitted to run concurrently on another thread. The client can then use methods on the
Future object to check on the status of the asynchronous method, and eventually obtain
the Integer result value.

Note: The javax.ejb.AsyncResult object is a convenience implementation of the Future
interface used only to pass the object to the container. The object is never passed to the
client.

WASV8_EJB31.ppt Page 8 of 32

Asynchronous session bean invocations – fire and return results

(2 of 2)

Import javax.ejb.AsyncResult;

….

@Stateless

@Local(Calculator.class)

@LocalBean

public class CalculatorBean {

public someMethod(int a, int b);

@Asynchronous

public Future<Integer> performCalculation(int a, int b)

{

// ... do calculation

Integer result = ...;

return new AsynchResult(result);

}

9 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

This is basically the same “fire and return results” example, but for a bean with both a local
business interface and a No-Interface view.

The ‘performCalculation’ method will run asynchronously whether it is called through the
local Calculator interface or the No-Interface view.

WASV8_EJB31.ppt Page 9 of 32

Asynchronous session bean invocations – Future object

isDone()

Returns true if this task completed.

boolean

isCancelled()

Returns true if this task was cancelled before it completed
normally.

boolean

get(long timeout, TimeUnit unit)

Waits if necessary for at most the given time for the computation
to complete, and then retrieves its result, if available.

V

get()

Waits if necessary for the computation to complete, and then
retrieves its result.

V

cancel(boolean mayInterruptIfRunning)

Attempts to cancel execution of this task.

boolean

Method Summary

10 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

For reference, here are the methods provided on the returned Future object.

The ‘get’ methods allow the client to obtain the result of the asynchronous method call,

either waiting until completion or until the specified time expires.

The ‘isCancelled’ and ‘isDone’ methods allow the client to check on the status of the

asynchronous request.

And, the ‘cancel’ method allows the client to attempt to cancel an asynchronous request.

The ‘cancel’ method will only return true if the asynchronous method could be cancelled

before it was ever started; that is, while it was still in the queued state.

WASV8_EJB31.ppt Page 10 of 32

© 2011 IBM Corporation 11 Enterprise Java Beans (EJB) 3.1

Asynchronous session bean invocations – configuration (1 of 2)

WebSphere Application Sever supports asynchronous session bean invocations by

submitting each request to a work manager. A work manager controls a thread pool

created for Java EE applications. A work manager will place all submitted work on a queue

until a thread becomes available to run the request.

Although a default work manager configuration is provided, it is also possible to configure

a custom work manager as shown in this screen capture.

When configuring a custom work manager, be aware that not all options available are

compliant with the EJB specification behavior.

More information about work managers may be found in the WebSphere Application

Server Information Center.

WASV8_EJB31.ppt Page 11 of 32

© 2011 IBM Corporation 12 Enterprise Java Beans (EJB) 3.1

Asynchronous session bean invocations – configuration (2 of 2)

In addition to configuring the size of the thread pool and queue, another important

configuration option is the queue full action.

By default, when all threads are active, and the queue is full, additional asynchronous

requests will block. This means that control is not returned to the client immediately, but

instead, the client thread will block until the request can be added to the queue.

The alternative is to specify the value ‘Fail’. When fail is specified, an exception is returned

to the client indicating that the asynchronous request could not be submitted.

WASV8_EJB31.ppt Page 12 of 32

Singleton session beans (1 of 2)

� New session bean type
� Guaranteed single instance per JVM
� Supports eager initialization during application startup
� Allows for sharing of data across all the apps in the Server

– avoid extra database trips

� Concurrency management
@ConcurrencyManagement(BEAN)

For example: public synchronized setProductInfo….

@ConcurrencyManagement(CONTAINER)

@Lock(LockType.READ)

@Lock(LockType.WRITE)

13 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

Also new in EJB 3.1 are singleton session beans. These are a new type of session bean,

in addition to stateless and stateful.

Singleton beans have many of the same characteristics of other session beans, such as

declarative transaction management, security, remote interfaces, dependency injection,

component life-cycle callbacks, and interceptors.

However, singleton beans introduce several new behaviors:

First, as the name suggests, it is guaranteed that only a single instance will exist per JVM.

Next, singleton beans support initialization during application startup and destruction

during application shutdown, similar to the Startup beans that existed in prior versions of

WebSphere Application Server. This feature allows a singleton to fully initialize application

state before clients are allowed to access other EJBs.

And finally, singletons introduce the ability to configure concurrency management for EJB

methods. Since there is only a single instance in each JVM, it is important that the bean

implementation handle concurrent method calls. The bean implementation can rely on the

EJB Container to provide this support by using container managed concurrency, and

properly indicating which methods are read only, and which methods will change the state

of the singleton instance.

WASV8_EJB31.ppt Page 13 of 32

Singleton session beans (2 of 2)

@Singleton

@LocalBean

@Startup

public class InventoryBean

{

@Lock(LockType.READ)

public int[] getInventory() {…}

@Lock(LockType.WRITE)

public void setInventory() {…}
}

14 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

Here is an example of how to configure a singleton session bean using annotations.

This singleton bean will have a No-Interface view that exposes two methods. One of the
methods is read only, and may be entered concurrently on multiple threads, whereas the
other method has been configured for write access, and will block until all other threads
have exited methods on the bean instance.

Also note the use of the startup annotation. This indicates that the bean instance will be
created, and the PostConstruct life cycle methods called at the end of module start.

WASV8_EJB31.ppt Page 14 of 32

Calendar based timer expressions

@Stateless

public class mybean{

@Resource
private TimerService ts;

public void doSomeTimerWork(String message, String minute)

{

TimerConfig tc = new TimerConfig(message, false);

ScheduleExpression se = new ScheduleExpression();

se.minute(minute);

ts.createCalendarTimer(se, tc);

}

@Timeout
private void doSomeTimeOutWork(timer timer)

.. Stuff

}

15 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

Calendar based EJB timer expressions is the first of several new enhancements to the

EJB Timer Service.

The new calendar-based syntax is modeled after the UNIX cron facility and may be used

for both programmatically and automatically created timers. And also both persistent and

non-persistent timers.

This is an example of how to programmatically create a calendar based timer. In the

example, a timer is created that runs at the specified minute, or minutes, depending on the

contents of the ‘minute’ string.

Examples that demonstrate using calendar based timer expressions are provided later,

when covering the new automatically created timers feature.

WASV8_EJB31.ppt Page 15 of 32

Automatic timer creation (1 of 2)

� Created automatically

� Can be created using annotation or XML

� Created or started when application first started

� Removed when application is uninstalled

16 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

Since EJB timers were first introduced in the EJB specification, the only way to create
them was programmatically through the Timer Service API. Now, an EJB may be
configured so that the timers associated with it are automatically created during application
install.

These new automatically created timers may be configured through either annotations or
in the EJB deployment descriptor. Once created, the timers will exist until the application is
uninstalled.

WASV8_EJB31.ppt Page 16 of 32

Automatic timer creation (2 of 2)

// Generate account statements at 1 a.m. on the 1st of every month
@Schedule (hour=”1”, dayOfMonth=”1”, info=”AccountStatementTimer”)
public void generateMonthlyAccountStatements(Timer t) {
String timerInfo = t.getInfo();

17 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

The Schedule annotation is used to configure automatically created timers.

In this example, the schedule annotation has been used to configure a timer that will run

the ‘generateMonthlyAccountStatements’ method at 1 a.m. on the 1st of every month. This

is also another example of a calendar based timer.

WASV8_EJB31.ppt Page 17 of 32

Non-persistent Timers

� Ability to declare non persistent timers.

� Applies to automatically and programmatically created timers

@Singleton

public class CacheBean {

Cache cache;

// Setup an automatic timer to refresh

// the Singleton instance cache every 10 minutes

@Schedule(minute=”*/10”, hour=”*”, persistent=false)

public void refresh()

{

// ... Code to refresh the cache.

}

}

18 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

Another new timer enhancement is the ability to define non-persistent timers. Unlike

persistent timers, non-persistent timers exist only in memory and are removed when the

application is stopped.

Both automatically and programmatically created timers can be created as non-persistent

timers.

This example shows how a calendar based automatically created timer is defined as non­
persistent.

WASV8_EJB31.ppt Page 18 of 32

© 2011 IBM Corporation 19 Enterprise Java Beans (EJB) 3.1

Timers configuration

The configuration options for persistent timers remain the same as in the past. A
scheduler is used to manage the timer tasks, backed by a database, where both the
scheduler and database can be configured.

Non-persistent timers require a simpler configuration. A database is not needed, and a
scheduler is not used. Instead, all that is needed is a basic work manager and thread pool.
Optionally, both persistent and non-persistent timers can be configured to use the same
thread pool, and will thus run with the same priority, and potentially consume fewer
resources.

In place of the scheduler, all that is needed are the two settings that control how frequently
to retry failed timers, and how many times to retry a failed timer before discarding. The
defaults are 300 seconds between retries, and to retry until successful. By default, a non­
persistent timer is not discarded until it has either succeeded or the application is stopped.

WASV8_EJB31.ppt Page 19 of 32

Embeddable EJB container

� Targeted at developers

� Allow for easy way to unit test EJB business logic

� Only need JavaSE

� Supports EJB Lite

20 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

Another ease of use enhancement for the EJB programming model in general, is the

introduction of an ‘Embeddable EJB Container’.

This new feature is targeted at developers, to allow for an easy way to unit test EJB

business logic in a J2SE environment. Client code is able to instantiate an EJB container

that runs within the same class loader and JVM.

In WebSphere Application Server V8, the provided embeddable EJB container supports

only the subset of EJB features defined as ‘EJB Lite’.

WASV8_EJB31.ppt Page 20 of 32

© 2011 IBM Corporation 21 Enterprise Java Beans (EJB) 3.1

Embeddable EJB container – EJB Lite (1 of 2)

The embeddable EJB Container does not support all feature of the EJB specification, but
rather a subset that is called ‘EJB Lite’. EJB Lite is a small, yet powerful subset of the full
EJB API set, suitable for writing many portable applications.

For reference, here are the main differences between the full EJB feature set and EJB
Lite.

WASV8_EJB31.ppt Page 21 of 32

© 2011 IBM Corporation 22 Enterprise Java Beans (EJB) 3.1

Embeddable EJB container – EJB Lite (2 of 2)

Here are the remaining differences.

WASV8_EJB31.ppt Page 22 of 32

© 2011 IBM Corporation 23 Enterprise Java Beans (EJB) 3.1

Embeddable EJB container (1 of 3)

Create instance
of EJBContainer

Setup
properties

Here is an example demonstrating how a test environment might create an instance of an
embeddable EJB Container using a set of properties to configure a data source and a
security role.

WASV8_EJB31.ppt Page 23 of 32

© 2011 IBM Corporation 24 Enterprise Java Beans (EJB) 3.1

Embeddable EJB container (2 of 3)

This is a continuation of the previous example, showing how the embeddable EJB
container might be used in a test environment.

WASV8_EJB31.ppt Page 24 of 32

© 2011 IBM Corporation 25 Enterprise Java Beans (EJB) 3.1

Embeddable EJB container (3 of 3)

This is an example demonstrating use of the embeddable container from a class main

method. This is useful for stand-alone testing.

See the WebSphere Application Server Information Center for additional information and

examples of calling this sample from a command line. Note that the embeddable EJB

container jar file and the EJB module need to be on the class path.

WASV8_EJB31.ppt Page 25 of 32

Embeddable EJB container – configuring a data source

� The embeddable EJB container configuration properties are listed in the information center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/rejb_emconproperties.html

� These properties cover configuring
– A data source
– Local transactions
– Reference bindings
– Security
– XA

26 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

You can find a list of configuration properties in the information center link given here. The
properties allow you to configure data sources, local transactions, bindings, security on the
container, and XA distributed transactions.

WASV8_EJB31.ppt Page 26 of 32

Packaging of EJBs in WAR files

� Continue with simplicity concept.

� No longer required to package EJBs in jars.

� EJB can be defined using annotation in WEB-INF/classes.

� EJB can be defined in WEB-INF/ejb-jar.xml

� A jar can exist in a WAR under WEB-INF/lib (part of war module)

� Except for entity beans, EJB version 1 and version 2 content is supported in a WAR
module.

27 Enterprise Java Beans (EJB) 3.1	 © 2011 IBM Corporation

The final EJB 3.1 enhancement being covered is the ability to package EJBs in WAR files.

This new feature continues to build on the EJB 3.0 enhancements for improved ease of
use.

Since many applications only access EJBs from servlets, it only makes sense to allow the
EJBs to be packaged with the servlet code that will be accessing them.

For convenience, the EJBs may be packaged in either the WEB-INF/classes directory or
in a standard EJB jar file packaged in the WEB-INF/lib directory. Also, the EJB
configuration information may be provided through either annotations or an EJB
deployment descriptor placed in the WEB-INF directory.

Except for the older EJB version 1 and version 2 entity beans, all other EJB features are
supported in a WAR module.

WASV8_EJB31.ppt	 Page 27 of 32

© 2011 IBM Corporation28 Enterprise Java Beans (EJB) 3.1

SummarySummary

Section

Following is a summary of the EJB 3.1 features covered.

WASV8_EJB31.ppt Page 28 of 32

Summary

� Overview of these new EJB 3.1 functions:
– The no-interface local view
– Embeddable EJB container
– Asynchronous session bean invocation
– Singleton session bean type
– Calendar-based timer expressions
– Automatic timer creation
– Non-persistent timers
– Packaging of EJBs in .WAR files

29 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

In summary, even though this was just a point revision to the EJB specification, many
significant improvements and features have been added.

WASV8_EJB31.ppt Page 29 of 32

References

� EJB 3.1 specification

http://jcp.org/aboutJava/communityprocess/final/jsr318/index.html

� WebSphere Application Server information center

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/welcome_base.html

30 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

For further information about these EJB 3.1 topics, see the EJB 3.1 Specification or the
WebSphere Application Server Information Center.

WASV8_EJB31.ppt Page 30 of 32

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASV8_EJB31.ppt

This module is also available in PDF format at: ../WASV8_EJB31.pdf

31 Enterprise Java Beans (EJB) 3.1 © 2011 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASV8_EJB31.ppt Page 31 of 32

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
Java, and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

32 © 2011 IBM Corporation

WASV8_EJB31.ppt Page 32 of 32

