

© 2011 IBM Corporation

IBM WebSphere Application Server

Asynchronous invocation API

This presentation describes the asynchronous invocation API, a new programming model
for transferring events that require processing in a SIP application session to any server in
a cluster based on an application session ID.

WASv8_SIP_AsyncInvocationAPI.ppt Page 1 of 26

© 2011 IBM Corporation 2 Asynchronous invocation API

Agenda

� Overview

� Classes and interfaces

� Samples

� Use cases

The first section of this presentation provides an overview of the asynchronous invocation
API, including a look at the purpose and benefits of the programming model and a
description of the underlying architecture that the API uses. The second section describes
the new classes that support the asynchronous invocation model, and the third section
includes examples of how to use the APIs in your applications. The last section describes
some use cases for the asynchronous invocation API, including both a single server and a
clustered environment.

WASv8_SIP_AsyncInvocationAPI.ppt Page 2 of 26

© 2011 IBM Corporation3 Asynchronous invocation API

OverviewOverview

Section

This section provides an overview of the asynchronous invocation API, including a look at
the purpose and benefits of the programming model and a description of the underlying
architecture that the API uses.

WASv8_SIP_AsyncInvocationAPI.ppt Page 3 of 26

Overview

� Ideally, all events related to a particular SIP application session are:
– Invoked on a single server initially assigned to handle that session
– Processed on a single thread within that server

� In some situations, an external event might require transferring work from one server in a cluster to
another

– Typically triggered by an event outside the SIP container
– Causes a state change in a SIP session on another server in the cluster

� Asynchronous invocation API allows an application to send a task to be run on the correct server
– Dispatched to the appropriate location, based on session ID

4 Asynchronous invocation API	 © 2011 IBM Corporation

Typically, all events related to a certain sip application session should be invoked on one
server initially assigned to handle that session and on a single thread within that server.
There are some situations when an event other then a SIP container event – not the
reception of a SIP message or SIP timer execution – is invoked on a certain server in the
cluster that it needs to cause a state change to a SIP session that resides on another
server. In this case, the application needs to pass the event task to be processed on the
correct server. The idea behind an asynchronous invocation solution is that a piece of
work associated with a specific session can be handled by any server in the cluster, and
this server can transfer the work directly to the right place, based on the session ID. The
actual work is then done in the target server where the SIP application session is
managed. The most ideal case is when the application session resides on the server that
receives the message related to the session and this server performs the task locally.

WASv8_SIP_AsyncInvocationAPI.ppt	 Page 4 of 26

Problems the API solves

� Synchronicity is now guaranteed when requests for interaction with the SIP container come from other Java EE
components

– Previous implementations handled SIP servlet requests only, for requests within the server that owned the
application session

� Two requests related to the same SIP application session cannot run simultaneously on different threads
– Example: An MDB in a Java EE application retrieves an event to send a SIP message on a thread that is

different than the thread that owns the SIP application session

� In the context of a SIP application session, a server can redirect both SIP and non-SIP requests to the owning
server

– Example: A web service that is initiating a SIP dialog can reside in a server different than the server that
owns the SIP application session it needs to use

5 Asynchronous invocation API	 © 2011 IBM Corporation

The asynchronous invocation model guarantees that no two tasks dispatched using the
API, associated with the same session ID, can be processed at the same time on different
threads, even when those tasks come from non-SIP interfaces, like Java EE components.
Previous implementations handled SIP servlet requests only, and can only process the
task within the same server that owned the application session – there was no native
support for dispatching across a cluster. Consider a message-driven bean in a Java EE
application that retrieves an event that requires sending a SIP message on a particular
thread, associated with some specific SIP application session. If the SIP message is
dispatched using the asynchronous invocation API, then no other tasks associated with
that session ID are allowed to run with the asynchronous event is being processed.
Synchronicity is guaranteed even when SIP messages are dispatched across servers in a
cluster. For example, a web service that is initiating a SIP dialog can reside in a server
that is different than the server that owns the SIP application session that the web service
needs to use.

WASv8_SIP_AsyncInvocationAPI.ppt	 Page 5 of 26

Benefits

� Avoids the need to access a central session repository for all servers and migrate sessions from one server to another to
work with remote sessions

� Works in a thread-safe manner
–	 API guarantees that only one thread at a time processes messages related to a SIP application session, so no need to

synchronize session access
– Synchronicity guaranteed in both a single server and a clustered environment

� No more than two servers are involved in the invocation process
– The server that retrieves the work task
– The target server that owns the SIP application session relevant to the task

� Asynchronous invocation API is scalable
– Cross server invocation is used only when required
– No impact to performance in a clustered environment as more servers are added to the cluster

6 Asynchronous invocation API	 © 2011 IBM Corporation

By using the asynchronous invocation API, you avoid the need to maintain and access a
central session repository for all servers, and you do not need to migrate sessions from
one server to another to work with remote sessions. This is good because using those
methods impacts performance due to locking, maintaining process synchronicity, and
remotely accessing data. The asynchronous invocation API guarantees synchronicity and
processes all dispatched tasks in a thread-safe way. The API guarantees that only one
thread at a time processes messages related to a SIP application session, so you do not
need to synchronize session access. Synchronicity is guaranteed in both a single server
and a clustered environment. Using the API offers much better performance than a
manual locking scheme, and the API is scalable since no more than two servers are ever
involved in the invocation process – the server that invokes the task, and the target server
that owns the SIP application session relevant to the task. Cross server invocation is used
only when required, and, in a clustered environment, there is impact to performance as
more servers are added to the cluster.

WASv8_SIP_AsyncInvocationAPI.ppt	 Page 6 of 26

Asynchronous task dispatching

� Application session is created by an incoming request, or dynamically by an application

� SIP container has queues where tasks related to SIP application sessions wait to be processed
– Tasks are pieces of application code that process SIP messages or modify objects associated with a particular session
– Examples: Listener timeout or processing a SIP message

� When a new task is in the queue, one of the threads in the thread pool will process it
– All tasks related to a given session ID are processed by an appropriate thread
– Avoids synchronicity and locking issues

7 Asynchronous invocation API © 2011 IBM Corporation

A SIP application session can be created in different ways – for example, by an incoming
SIP request, or dynamically by some application. Once a SIP application session is
created, all related SIP messages always get delivered to the same server in the cluster;
this ensures that sessions reside in the same SIP container. The container has queues
where tasks related to a SIP application session waits to be processed. These queues are
not exposed through any interfaces or APIs, instead, all events targeted to the same
session are always automatically sent to the same queue internally. These tasks can be
any piece of application code that processes a SIP message or modifies objects
associated with a particular session. When a task comes into the queue, one of the
threads in the thread pool processes that task. No two tasks from the same queue are
dispatched to the thread pool at the same time. It is not true that all tasks for a particular
session are processed on the same thread in the thread pool – only that they will come in
through the same queue and therefore not be processed by different threads at the same
time. By using this queuing scheme, the asynchronous invocation API avoids
synchronicity and locking issues.

WASv8_SIP_AsyncInvocationAPI.ppt Page 7 of 26

© 2011 IBM Corporation 8 Asynchronous invocation API

Asynchronous task dispatching, single server

This diagram illustrates how asynchronous task dispatching works inside the SIP
container. There are three SIP application sessions – A, B, and C. Each one is associated
with a specific queue. All events targeted to a specific session get added to the
appropriate queue and are processed in the order received. These events can come from
many different locations, including SIP servlet applications, SIP timers, Java EE
applications, or tasks being dispatched using the asynchronous invocation API. Consider
SIP application session A in this example. There are tasks coming in for session A both
from the SIP servlet application, shown on the right, and the asynchronous work
dispatcher, shown on the left. As each event targeted for session A comes in to the
container, it automatically gets added to queue A, which is designated to handle all of the
tasks related to session A. Only one item from queue A can be sent to the thread pool for
processing at any given time. In this way, it is guaranteed that no two events related to the
same application session can be processed at the same time.

WASv8_SIP_AsyncInvocationAPI.ppt Page 8 of 26

© 2011 IBM Corporation9 Asynchronous invocation API

Classes and interfacesClasses and interfaces

Section

This section describes the new classes that support the asynchronous invocation model.

WASv8_SIP_AsyncInvocationAPI.ppt Page 9 of 26

API packaging

� The classes and interfaces for the asynchronous invocation API are packaged here:
– <WAS_HOME>/plug-ins/com.ibm.ws.sip.interface.jar

� One class and one interface are included as a part of the asynchronous invocation API:
– AsynchronousWork: class used by an application developer to run asynchronous work task
– AsynchronousWorkListener: interface used by an application developer to receive a response for

the result of the asynchronous work task

10 Asynchronous invocation API © 2011 IBM Corporation

The classes and interfaces that are required to implement the asynchronous invocation
model are provided with WebSphere Application Server. They are packaged in the
<WAS_HOME>/plug-ins directory in the file com.ibm.ws.sip.interface.jar. The API is
simple to use; there is only one class and one interface that you need to add
asynchronous dispatching to your application. The AsynchronousWork class is used to run
the asynchronous work task. The AsynchronousWorkListener interface receives
responses – for example, a success or failure response – for an asynchronous task.

WASv8_SIP_AsyncInvocationAPI.ppt Page 10 of 26

© 2011 IBM Corporation 11 Asynchronous invocation API

Asynchronous invocation class diagram

AsynchronousWork(String sessionID)
dispatch(AsynchronousWorkListener listener)
Serializable doAsyncTask()

<<Java Class>>
AsynchronousWork

workCompleted(Serializable result)
workFailed(int reasonCode, String reason)

<<Java Interface>>
AsynchronousWorkListener

<<use>>

This class diagram shows how the AsynchronousWork class and the
AsynchronousWorkListener are related. The AsynchronousWork class contains three
important methods: a constructor that takes a session ID as a parameter, a dispatch
method that sends the asynchronous task off to be processed and takes a listener as a
parameter, and a doAsyncTask method that defines the piece of work that gets dispatched
and runs in the target session’s queue. The AsynchronousWorkListener includes two
methods that get signaled on success or failure of the task dispatch. If the task is
dispatched successfully, a Serializable result comes back to the originating thread. If the
dispatch fails, a description of what failed comes back through the workFailed method.

WASv8_SIP_AsyncInvocationAPI.ppt Page 11 of 26

AsynchronousWorkListener

� Interface used by an application developer to receive the result of an asynchronous work task
– Either success or failure

� Contains two methods for processing the result
– void workCompleted(Serializable result)
– void workFailed(int reasonCode, String reason)

• Called by the container when the dispatch fails, not when the task fails

12 Asynchronous invocation API © 2011 IBM Corporation

The AsynchronousWorkListener interface can be used by an application developer to
define a listener that is able to receive the result of an asynchronous work task. This result
can take two forms – either success, or failure. If the task dispatch is successful, a
Serializable result object comes back through the listener. Just because the
workCompleted method gets signaled, that does not mean that the asynchronous piece of
work completed with the expected results. It is a good idea to verify the result of the task
before proceeding with application processing. If the task dispatch fails, then the
workFailed method is called by the container. Note that if the workFailed method gets
invoked, that does not mean that the task failed, only that the dispatch of the task failed.
One reason that the workFailed method might be called is if the SipApplicationSession
was not found. This can happen if the session with the ID that was used never existed, or
was already invalidated and removed before the task was dispatched.

When the asynchronous task is dispatched from a non-SIP container thread – for
example, a JMS thread – the listener callback code is run on the same SIP thread that the
asynchronous task was dispatched to. Alternatively, when the asynchronous task is
dispatched from a SIP container thread – for example, to modify a SipApplicationSession
element other than the session that the dispatching thread is currently set to handle – then
the listener callback is dispatched back to be run in the same queue where the task that
issued the dispatch was taken from. This is so that the application can continue modifying
the first application session data after the dispatch for the second session has taken place,
and is able to do that in the context of the right thread. When the dispatch starts from a
non-SIP container thread, there is no way to return it back to the originating thread.

WASv8_SIP_AsyncInvocationAPI.ppt Page 12 of 26

AsynchronousWork (1 of 2)

� Abstract class that needs to be extended by the class wanting to do asynchronous work

� Extending class must implement the abstract method doAsyncTask() that returns a Serializable object
– The Serializable that gets returned is the one that is passed to the

AsynchronousWorkListener.workCompleted() method

� When an application wants to do asynchronous work:
– Provides a session ID to create an AsynchronousWork object
– Calls the dispatch() method with an optional AsynchronousWorkListener

• The listener receives a response when the work is complete
• If the calling application does not want a response, pass in null for the listener

13 Asynchronous invocation API © 2011 IBM Corporation

AsynchronousWork is an abstract class that needs to be extended by the class wanting to
dispatch asynchronous tasks. The extending class must implement the doAsyncTask
method that returns a Serializable object. This Serializable object is the same one that
gets returned to the AsynchronousWorkListener when the task completes. If null comes
back from the doAsyncTask method, the listener does not get invoked, even if it exists.
When an application wants to dispatch an asynchronous task, it creates an
AsynchronousWork object based on a SIP application session ID. This
AsynchronousWork object must contain a doAsyncTask method that defines the piece of
work that is going to be invoked asynchronously. When the application wants to invoke the
task, it calls the dispatch method on the AsynchronousWork object, passing in an optional
AsynchronousWorkListener to receive a response when the work is complete. If the calling
application does not want a response, it can pass in null for the listener.

WASv8_SIP_AsyncInvocationAPI.ppt Page 13 of 26

AsynchronousWork (2 of 2)

� When the container receives the dispatch() call, it:
– Determines which server manages the related session
– Invokes the doAsyncTask() method in the correct server, on an appropriate thread

� After the work is done, a response comes back to the container
– Invokes the appropriate AsynchronousWorkListener to return a response to the original calling

application

14 Asynchronous invocation API © 2011 IBM Corporation

When the SIP container receives a dispatch call from an application, it needs to determine
which server manages the related session. If the session is managed in a different server,
the piece of work is transferred to the owning server. The task is sent to the queue
associated with the owning session ID, so it will run on an appropriate thread, avoiding any
conflicts with other tasks targeted for that session ID. After the work is done, a response
comes back to the container, and the container invokes the appropriate
AsynchronousWorkListener to return a response to the original calling application. If the
work was transferred across servers in a cluster, the response gets transferred back to the
calling server, to the original thread where the asynchronous task was invoked.

WASv8_SIP_AsyncInvocationAPI.ppt Page 14 of 26

© 2011 IBM Corporation15 Asynchronous invocation API

SamplesSamples

Section

This section gives examples of how to use the APIs in your applications.

WASv8_SIP_AsyncInvocationAPI.ppt Page 15 of 26

Setting up the listener

ppuubblliicc ccllaassss MMyyLLiisstteenneerr

iimmpplleemmeennttss AAssyynncchhrroonnoouussWWoorrkkLLiisstteenneerr {{

ppuubblliicc vvooiidd wwoorrkkCCoommpplleetteedd((SSeerriiaalliizzaabbllee mmyyRReessuulltt)){{

//// ppeerrffoorrmm aaccttiioonn bbaasseedd oonn ssuucccceessssffuull wwoorrkk

}}

ppuubblliicc vvooiidd wwoorrkkFFaaiilleedd((iinntt rreeaassoonnCCooddee,, SSttrriinngg rreeaassoonn)){{

//// ppeerrffoorrmm aaccttiioonn bbaasseedd oonn ffaaiilleedd wwoorrkk

}}

}}

16 Asynchronous invocation API © 2011 IBM Corporation

To receive information about the task completion, implement the
AsynchronousWorkListener class, as in the example shown here. This interface defines
two methods – workCompleted and workFailed – to receive information about the result of
the asynchronously dispatched task. It is a good practice to verify that the completion
result is valid before proceeding with application processing. The code in these methods is
invoked on the source server.

WASv8_SIP_AsyncInvocationAPI.ppt Page 16 of 26

Creating the class to do asynchronous work (1 of 2)

ppuubblliicc ccllaassss MMyyCCllaassss eexxtteennddss AAssyynncchhrroonnoouussWWoorrkk {{

......

//// TThhiiss iiss tthhee ccooddee tthhaatt iiss iinnvvookkeedd oonn tthhee
//// ttaarrggeett mmaacchhiinnee//tthhrreeaadd
ppuubblliicc SSeerriiaalliizzaabbllee ddooAAssyynnccTTaasskk(()) {{

//// AApppplliiccaattiioonn ccooddee ggooeess hheerree,, ffoorr iinnssttaannccee
aappppSSeessssiioonn ==
sseessssiioonnUUttiillss..ggeettAApppplliiccaattiioonnSSeessssiioonn((_sseessssiioonnIIdd));;

aappppSSeessssiioonn..ccrreeaatteeRReeqquueesstt(());;
_

SSeerriiaalliizzaabbllee mmyyRReessppoonnssee = nneeww MMyyRReessppoonnssee(());;
mmyyRReessppoonnssee..sseettSSttaattuuss((220000));;

 =

rreettuurrnn ((mmyyRReessppoonnssee));;

}}

......

17 Asynchronous invocation API © 2011 IBM Corporation

Extend the abstract class AsynchronousWork with the SIP related code that you need to
dispatch to the appropriate server, based on session ID. The extended implementation of
the doAsyncTask method is invoked on the target server that contains the SIP application
session, and whose ID was set in the constructor that implements the AsynchronousWork
class. The doAsyncTask method can contain any application code that you want to run on
the target server for the asynchronous invocation.

WASv8_SIP_AsyncInvocationAPI.ppt Page 17 of 26

Creating the class to do asynchronous work (2 of 2)

ppuubblliicc ccllaassss MMyyCCllaassss eexxtteennddss AAssyynncchhrroonnoouussWWoorrkk {{

......

//// MMaakkiinngg tthhee ccaallll ttoo ddoo aassyynncchhrroonnoouuss wwoorrkk
ppuubblliicc vvooiidd oonnMMyyMMeessssaaggee(()) {{

//// OObbttaaiinn tthhee sseessssiioonn IIDD ffrroomm tthhee mmeessssaaggee oorr
//// ssoommeewwhheerree eellssee
SSttrriinngg sseessssiioonnIIdd = oobbttaaiinnIIddFFrroommMMeessssaaggee(());; =
MMyyCCllaassss mmyyCCllaassss = nneeww MMyyCCllaassss((sseessssiioonnIIdd));; =

//// CCrreeaattee tthhee lliisstteenneerr
MMyyLLiisstteenneerr mmyyLLiisstteenneerr = nneeww MMyyLLiisstteenneerr(());; =

//// DDiissppaattcchh iitt

mmyyCCllaassss..ddiissppaattcchh((mmyyLLiisstteenneerr));;

}}

}}

18 Asynchronous invocation API © 2011 IBM Corporation

This page offers an example of how to actually make the asynchronous call. In this case,
the onMyMessage method is an application method that gets called when some
proprietary message is received – the trigger to dispatch an asynchronous piece of work
will vary from application to application. Recall that, in this example, the MyClass object
extends AsynchronousWork, so you need to provide a session ID to create an instance of
MyClass. In this case, the incoming message that’s triggering the asynchronous task
contains the session ID that you need, so this application contains a private method called
obtainIdFromMessage that will pull out the required session ID (the implementation of the
private method is not shown in this example). In your application environment, you might
obtain the session ID using some other mechanism – perhaps it is stored in a registry that
you maintain, or perhaps the session ID will come in as a part of a web service message
that is requesting some SIP action. After acquiring the session ID, create an instance of
the class based on AsynchronousWork (in this case, MyClass), then create an instance of
your AsynchronousWorkListener, if you are using one. Finally, invoke the dispatch()
method to send the asynchronous task off for processing. The result of the task comes
back through the listener.

WASv8_SIP_AsyncInvocationAPI.ppt Page 18 of 26

© 2011 IBM Corporation19 Asynchronous invocation API

Use casesUse cases

Section

This section describes some use cases for the asynchronous invocation API, including
both a single server and a clustered environment.

WASv8_SIP_AsyncInvocationAPI.ppt Page 19 of 26

Use case examples

� Java EE application receives an event to send a message to an application session that
does not belong to the SIP container

� Application sends an instant message on an existing SIP dialog using the HTML protocol
– Instant message handled by a web service that resides on a server that does not own

the dialog
– Message contains the application session ID for which the instant message was

generated
• Allows the SIP container to pass the message to the correct server

20 Asynchronous invocation API	 © 2011 IBM Corporation

Several compelling use cases for the asynchronous involve interaction with non-SIP
components. For example, a Java EE application might receive an event – perhaps
through a JMS message – that it needs to send a message to an application session that
does not belong to the SIP container in the server where the Java EE application is
running. In this case, the application can use the asynchronous invocation API to dispatch
the message to the correct server, in a thread-safe way.

Consider an application that combines instant messaging and web services with SIP
messages. The application needs to send an instant message using the HTML protocol
that needs to be handled in an existing SIP dialog. The instant message is handled by a
Web service that resides on a server that does not own the dialog, but the message
contains the SIP application session ID for which the instant message was generated.
This allows the SIP container to pass the message to the correct server, using the
asynchronous invocation API.

WASv8_SIP_AsyncInvocationAPI.ppt	 Page 20 of 26

Example: API message flow for a single server

21 Asynchronous invocation API © 2011 IBM Corporation

This diagram shows an example of the message flow for an application using the
asynchronous invocation API, in a single server environment, so the application making
the asynchronous calls is running in the same instance of WebSphere Application Server
as the SIP container that owns the relevant SIP application session.

Starting on the left of the diagram, a client, or UAC, sends a SUBSCRIBE message to the
SIP container, indicating a need to be notified of certain types of messages. This initial
request causes a new SIP application session to be created; this session is internally
associated with a processing queue – in this case, queue X. The SUBSCRIBE request
gets forwarded to the UAS application, which is running in the same server. The UAS
stores the session ID for later use, and sends a 200 OK back to the UAC. At some point in
the future, the UAS receives an incoming event for the existing SIP application session
associated with the UAC. This event is coming from an external thread – perhaps on a
JMS queue or a web service notification. This event is shown by the incoming arrow on
the far right of the diagram. When the UAS receives this event, it gets ready to invoke the
work asynchronously by creating an AsynchronousWork object based on the session ID
that came in as a part of the incoming message. The UAS calls the dispatch() method,
and the SIP container sends the task to the queue for the correct application session, and
the task gets run on an appropriate thread for that session’s queue. In this case, the
NOTIFY message is being sent as a part of the asynchronous task. When the task
completes, the SIP container sends status back to the UAS application through the
AsynchronousWorkListener.

WASv8_SIP_AsyncInvocationAPI.ppt Page 21 of 26

© 2011 IBM Corporation 22 Asynchronous invocation API

Example: API message flow in a cluster

This diagram shows an example of asynchronous invocation API message flow when the
invocation takes place across servers in a cluster.

In this case, Application X is running on SIP Container 1, and is associated with a SIP
application session, SAS1. This relationship is shown in the upper left of the diagram. The
session SAS1 is implicitly associated with a specific internal queue that will process all of
the messages targeted for that session – queue A in this example. The same application
is running on SIP Container 2 in a separate instance of WebSphere Application Server. At
some point, Application 2 receives an incoming event targeted for SAS1, as shown by the
arrow coming in from the far left of the diagram. Application 2 uses the asynchronous
invocation API to dispatch this event by creating an AsynchronousWork object based on
the session ID SAS1, and then dispatching the task. SIP Container 2 receives this
dispatched task and checks whether SAS1 exists on this server. In this case it does not,
and SIP Container 2 sends the task over a SIP ASYNWORK message to the WAS SIP
Proxy. The Proxy in turn looks up the appropriate server name based on the session ID,
and then forwards the SIP request with the asynchronous task to the owning server. From
this point on, the work takes place much like it does in a single server context – the
asynchronous work time is added to the processing queue for SAS1, the task is run on an
appropriate thread, and the result of the work is transferred back to the originating server,
using a SIP response, through the SIP proxy.

WASv8_SIP_AsyncInvocationAPI.ppt Page 22 of 26

© 2011 IBM Corporation23 Asynchronous invocation API

SummarySummary

Section

This section contains a summary of this presentation.

WASv8_SIP_AsyncInvocationAPI.ppt Page 23 of 26

Summary

� The asynchronous invocation API enables transferring work associated with a SIP application session to the
appropriate server, in a thread-safe way

� Events for asynchronous dispatching can be triggered in any Java EE application, even outside the scope of
standard SIP servlet operations

� The API provides two new classes – AsynchronousWork and AsynchronousWorkListener – to support task
dispatching

24 Asynchronous invocation API	 © 2011 IBM Corporation

The asynchronous invocation API enables transferring work associated with a SIP
application session to the appropriate server, in a thread-safe way. Task dispatching can
take place across servers in a cluster. Events for asynchronous dispatching can be
triggered in any Java EE application, even outside the scope of standard SIP servlet
operations. For example, events targeted for a SIP dialog might come in on a JMS queue
or through a web service or an enterprise bean, and the events can be dispatched to be
processed on the correct target server that owns the relevant SIP application session. The
API includes a new class, AsynchronousWork, and a new interface,
AsynchronousWorkListener, to support task dispatching.

WASv8_SIP_AsyncInvocationAPI.ppt	 Page 24 of 26

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASv8_SIP_AsyncInvocationAPI.ppt

This module is also available in PDF format at: ../WASv8_SIP_AsyncInvocationAPI.pdf

25 Asynchronous invocation API © 2011 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv8_SIP_AsyncInvocationAPI.ppt Page 25 of 26

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. Other company, product, or
service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

26 © 2011 IBM Corporation

WASv8_SIP_AsyncInvocationAPI.ppt Page 26 of 26

