

© 2011 IBM Corporation

WebSphere Application Server V8

Servlet 3.0 security

This presentation describes Servlet 3.0 security features in IBM WebSphere Application
Server V8.

WASV8_Servlet30.ppt Page 1 of 41

Table of contents

� Overview

� Standard authentication methods

� HTTPOnly cookie support

� Realm name support for HTTP login prompts

� HTTP method omission

� Security annotations

� Dynamic servlet security annotations
� Summary
� Resources and references

2 Servlet 3.0 security © 2011 IBM Corporation

This presentation will cover Servlet 3.0 security in these basic sections. In the Overview,
the features are presented at a high level. After that, the new features will be presented at
a more detailed level with examples.

WASV8_Servlet30.ppt Page 2 of 41

© 2011 IBM Corporation3 Servlet 3.0 security

OverviewOverview

Section

This section describes the new features in Servlet 3.0 security at a high level.

WASV8_Servlet30.ppt Page 3 of 41

Overview (1 of 2)

� Standard programmatic authentication methods
– login()
– logout()
– authenticate()

� setHttpOnly() method
– Provide a standard way to set the “httpOnly” cookie

� Display the realm name for basic HTTP logins
� http-method-omission

– Exclude HTTP methods that should not use a set of security constraints

4 Servlet 3.0 security © 2011 IBM Corporation

Several new security features are defined by the Servlet 3.0 specification. New login,
authentication, and logout methods provide a standard programmatic mechanism for
processing logins across implementations. The setHttpOnly method provides standard
means of setting the “httpOnly” cookie to disallow cookie access by non-HTTP means.
Servlet 3.0 also provides a way for containers to display the realm name to users in a login
prompt when using basic HTTP authentication. The “HTTP method omission” element is a
new and simple way to exclude HTTP methods from security constraints.

WASV8_Servlet30.ppt Page 4 of 41

Overview (2 of 2)

� Security annotations

� Provide flexibility for a developer to configure the security constraints directly in the
servlet code.

� Dynamic security annotations

� Provide a way to inject security constraints using standard APIs.

5 Servlet 3.0 security	 © 2011 IBM Corporation

Servlet 3.0 provides the ability to use security-related annotations to specify security
metadata in Servlet code rather than in the web deployment descriptor, and dynamic
support for annotations allows for dynamic injection of security constraints and role
mappings.

WASV8_Servlet30.ppt	 Page 5 of 41

© 2011 IBM Corporation6 Servlet 3.0 security

Standard authentication methodsStandard authentication methods

Section

This section covers the standard authentication methods defined by Servlet 3.0.

WASV8_Servlet30.ppt Page 6 of 41

HTTPServletRequest.login method

� This method allows an application to perform user name and password collection (as an
alternative to form-based login) and to instigate authentication of the request caller by the
container from within an unconstrained request context.

� login(String userName, String password)
– If SSO is enabled, create cookie and add to the response
– If HttpOnly is enabled, set HttpOnly cookie
– If callerSubject is null, set callerSubject
– Set invocationSubject
– Push a client subject onto the thread.

� Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/rsec_secgetru.html

7 Servlet 3.0 security	 © 2011 IBM Corporation
October 20, 2009

The login method authenticates a user to the WebSphere Application Server with a user
ID and password. If authentication is successful, it creates a user subject on the thread
and Lightweight Third Party Authentication (LTPA) cookies (if single sign-on (SSO) is
enabled). The “isUserInRole”, “getRemoteUser”, and “getAuthType” methods can be used
to retrieve the user information after calling the login method. More detailed information on
these methods can be found in the Information Center using the link shown here.

WASV8_Servlet30.ppt	 Page 7 of 41

HTTPServletRequest.login example

� WebSphere Application Server V8:
req.login(loginUser, loginPassword);

invokeProtectedEJB();

� Before WebSphere Application Server V8:
LoginContext lc = new
javax.security.auth.login.LoginContext("WSLogin", new
com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl(
"loginUser", "securityrealm", "loginPassword"));

Subject sub = lc.getSubject();
WSSubject.doAs(sub, …) ; // invoke a protected EJB

8 Servlet 3.0 security © 2011 IBM Corporation
October 20, 2009

This example shows how the new, standard login method in Servlet 3.0 can be used in
WebSphere Application Server V8, as compared to the code for handling a login in
previous versions.

WASV8_Servlet30.ppt Page 8 of 41

HTTPServletRequest.logout method

� This method logs out the user and removes the subject

� logout()
– Remove the user from authentication cache
– Remove the user client subject from the thread
– Set cookie maxAge to 0
– If no cookie in HttpServletRequest, then remove cookie from the HttpServletResponse
– Invalidate the session

9 Servlet 3.0 security © 2011 IBM Corporation
October 20, 2009

The logout method logs the user out of the application and invalidates the HTTP session.
WebSphere Application Server removes the user from the authentication cache and
removes the user subject from the thread. It then clears the LTPA cookie if single sign-on
is enabled and invalidates the HTTP session. Finally, the caller and invocation subjects
are cleared, and the authentication type is set to null.

WASV8_Servlet30.ppt Page 9 of 41

HTTPServletRequest.authenticate method

� This method allows an application to authenticate a user to WebSphere Application Server
by using the web container login mechanism configured for the ServletContext.

� HTTPServletRequest Authenticate(HttpServletResponse res)
– If SSO is enabled, create cookie and add to the response
– If HttpOnly is enabled, set HttpOnly cookie
– If callerSubject is null, set callerSubject
– Set invocationSubject
– Push a client subject onto the thread

10 Servlet 3.0 security	 © 2011 IBM Corporation
October 20, 2009

The “authenticate” method authenticates a user by using the WebSphere Application
Server container login mechanism configured for the Servlet context. During this process
WebSphere Application Server creates the necessary cookies, sets the caller and
invocation subjects, and pushes the client subject onto the appropriate thread.

WASV8_Servlet30.ppt	 Page 10 of 41

HTTPServletRequest.authenticate example

� WebSphere Application Server V8:
authCheck = req.authenticate(response);

invokeProtectedEJB();

� Before WebSphere Application Server V8:
LoginContext lc = new

javax.security.auth.login.LoginContext("WSLogin", new

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl

());

lc.login();

Subject sub = lc.getSubject();

WSSubject.doAs(sub , …) // invoke a protected EJB

11 Servlet 3.0 security © 2011 IBM Corporation

Similar to the previous example for the “login” method, this example shows how the new,
standard “authenticate” method in Servlet 3.0 can be used in WebSphere Application
Server V8, as compared to the authentication procedure in previous versions.

WASV8_Servlet30.ppt Page 11 of 41

© 2011 IBM Corporation12 Servlet 3.0 security

HTTPOnly cookie supportHTTPOnly cookie support

Section

This section covers support for the HTTPOnly cookie.

WASV8_Servlet30.ppt Page 12 of 41

HttpOnly cookie support

� Use the Cookie.setHttpOnly() method to set the HttpOnly cookie.

� Global Security -> Single Sign-on (SSO)
– Add a check box “HttpOnly cookie”
– Set security custom property, com.ibm.ws.security.addHttpOnlyAttributeToCookies, to

true if “HttpOnly cookie” box is checked. Default value is true

13 Servlet 3.0 security © 2011 IBM Corporation

Servlet 3.0 security provides a standard method Cookie.setHttpOnly() that can be used to
set the HttpOnly cookie programmatically. For more information on the HttpOnly cookie,
see the presentation titled “WebSphere Application Server V8 security hardening”.

WASV8_Servlet30.ppt Page 13 of 41

© 2011 IBM Corporation14 Servlet 3.0 security

Realm name support for HTTP login promptsRealm name support for HTTP login prompts

Section

This section covers realm name support for HTTP login prompts.

WASV8_Servlet30.ppt Page 14 of 41

Display the realm name in HTTP login prompts

� If the realm name is specified in the web.xml, this feature has no affect
– Realm name in web.xml is displayed

� This feature is disabled by default, enabled using custom property
– com.ibm.websphere.security.displayRealm = true

� If active authentication mechanism is Kerberos, the Kerberos realm name is displayed

� If active authentication mechanism is LTPA or SWAM, the WebSphere Application Server
realm is displayed

15 Servlet 3.0 security	 © 2011 IBM Corporation

Servlet 3.0 defines a simple way to display information about the user registry as the
realm name within a basic HTTP login prompt, providing users with more information
about the site to which they are logging in, if no realm name is specified in web.xml. If this
property is set to true, the user registry's realm name is displayed to the user. For
example, if stand-alone LDAP configuration is used, the LDAP server host name and port
are displayed. For LocalOS-based security, the hostname is displayed. If a realm name is
defined in web.xml, that realm name is displayed instead, regardless of whether this
feature is enabled.

WASV8_Servlet30.ppt	 Page 15 of 41

© 2011 IBM Corporation16 Servlet 3.0 security

HTTP method omissionHTTP method omission

Section

This section covers support for omitting certain HTTP methods from security constraints.

WASV8_Servlet30.ppt Page 16 of 41

http-method-omission element in the web.xml file

� Support the <http-method-omission> element in the security-constraint
<security-constraint>

<web-resource-collection>

<web-resource-name>precluded methods</web-resource-name>

<url-pattern>/acme/wholesale/*</url-pattern>

<url-pattern>/acme/retail/*</url-pattern>

<http-method-omission>GET</http-method-omission>

<http-method-omission>POST</http-method-omission>

</web-resource-collection>

</security-constraint>

� For the above, everything except the GET and POST methods are excluded. GET and
POST may have other security-constraint

17 Servlet 3.0 security	 © 2011 IBM Corporation

The “http-method-omission” element within a security constraint provides a simple way to
exclude one or more HTTP methods from the security constraint being defined. The
example shown here excludes the GET and POST methods from the defined security
constraint.

WASV8_Servlet30.ppt	 Page 17 of 41

Support http-method-omission element in the web.xml file

� Method GET, DELETE, PUT, POST and HEAD have security constraint
<security-constraint>

<web-resource-collection>

<url-pattern>/acme/retail/*</url-pattern>

<http-method>GET</http-method>

<http-method>DELETE</http-method>

<http-method>PUT</http-method>

<http-method>POST</http-method>

<http-method>HEAD</http-method>

</web-resource-collection>

<auth-constraint/>

</security-constraint>

� The same security constraint above can be defined using http-method-omission as follows:

<http-method-omission>TRACE</http-method-omission>

<http-method-omission>OPTIONS</http-method-omission>

18 Servlet 3.0 security © 2011 IBM Corporation

This slide shows an example of how to use the http-method-omission to exclude the
TRACE and OPTIONS methods from the security-constraint, as opposed to using the
http-method element to include all other elements. http-method-omission and http-method
elements are never mixed in the same security-constraint collection.

WASV8_Servlet30.ppt Page 18 of 41

© 2011 IBM Corporation19 Servlet 3.0 security

Security annotationsSecurity annotations

Section

This section covers support for security-related annotations in Servlet 3.0.

WASV8_Servlet30.ppt Page 19 of 41

Security annotations @Inherited and @ServletSecurity

� At most one instance of the @ServletSecurity annotation may occur on a servlet
implementation class

� @ServletSecurity annotation MUST NOT be specified on (that is, targeted to) a Java
method

� @HttpConstraint and @HttpMethodConstraint are using only within the @ServletSecurity
annotation

� @HttpConstraint followed by a list of zero or more @HttpMethodConstraint.

20 Servlet 3.0 security	 © 2011 IBM Corporation

There are several rules that apply to the @Inherited and @ServletSecurity annotations. At
most one instance of the @ServletSecurity annotation may occur on a servlet
implementation class. The @ServletSecurity annotation must not be specified on (that is,
targeted to) a Java method. The @HttpConstraint and @HttpMethodConstraint
annotations are used only within the @ServletSecurity annotation. The @HttpConstraint
annotation is followed by a list of zero or more @HttpMethodConstraint annotations.

WASV8_Servlet30.ppt	 Page 20 of 41

Security annotation @ServletSecurity interface

public @interface ServletSecurity {

HttpConstraint value();

HttpMethodConstraint[] httpMethodConstraints();

}

public @interface HttpConstraint {

ServletSecurity.EmptyRoleSemantic value();

java.lang.String[] rolesAllowed();

ServletSecurity.TransportGuarantee transportGuarantee();

}

public @interface HttpMethodConstraint {

ServletSecurity.EmptyRoleSemantic value();

java.lang.String[] rolesAllowed();

ServletSecurity.TransportGuarantee transportGuarantee();

}

21 Servlet 3.0 security © 2011 IBM Corporation

This slide describes the ServletSecurity, HttpConstraint, and HttpMethodConstraints
interfaces.

WASV8_Servlet30.ppt Page 21 of 41

@HttpConstraint and @HttpMethodConstraint value

� emptyRoleSemantic
– The authorization semantic, either PERMIT or DENY, that applies when no roles are

named in rolesAllowed. The default value for this element is PERMIT. DENY is not
supported in combination with a non-empty rolesAllowed list.

� rolesAllowed
– A list containing the names of the authorized roles. When this list is empty, its
– meaning depends on the value of the emptyRoleSemantic. The role name “*”
– has no special meaning when included in the list of allowed roles. The default
– value for this element in an empty list

� transportGuarantee
– The data protection requirements, either NONE or CONFIDENTIAL. This element is

equivalent in meaning to a user-data-constraint containing a transport-guarantee with the
corresponding value. The default value for this element is NONE.

22 Servlet 3.0 security © 2011 IBM Corporation

This slide describes the mapping of the @HttpConstraint and @HttpMethodConstraint
annotation values (defined for use within @ServletSecurity) to their corresponding auth
constraint and user-dataconstraint representations in web.xml file.

WASV8_Servlet30.ppt Page 22 of 41

Web Servlet annotation @WebServlet

� Used to declare a Servlet.

� If there is a @WebServlet in a Servlet code, the urlPatterns is required.

� If there is no @WebServlet in a Servlet code and servlet-mapping defined in the web.xml,
@ServletSecurity annotation is processed using the mapping information form web.xml file.

� If there is no @WebServlet in a Servlet code and no servlet-mapping defined in the web.xml;
@ServletSecurity will be ignored

23 Servlet 3.0 security	 © 2011 IBM Corporation

@WebServlet is used to define a Servlet component in a web application. The urlPatterns
or the value attribute on the annotation must be present. All other attributes are optional
with default settings. Refer to the javadoc for more details.

WASV8_Servlet30.ppt	 Page 23 of 41

Servlet security annotations examples (1 of 4)

Example 1: for all HTTP methods, no constraints

@WebServlet (name=" Example ", urlPatterns={"/ Example "})

@ServletSecurity

public class Example extends HttpServlet {

}

Example 2: for all HTTP methods, no auth-constraint, confidential transport required

@WebServlet (name=" Example ", urlPatterns={"/ Example "})

@ServletSecurity(@HttpConstraint(transportGuarantee =

TransportGuarantee.CONFIDENTIAL))

public class Example extends HttpServlet {

}

24 Servlet 3.0 security © 2011 IBM Corporation

This slide provides two examples of Servlet 3.0 security annotations. The first example
handles all HTTP methods with no constraints. The second example is for all HTTP
methods, with no auth-constraint and confidential transport required.

WASV8_Servlet30.ppt Page 24 of 41

Servlet security annotations examples (2 of 4)

Example 3: for all HTTP methods, all access denied

@WebServlet (name=" Example ", urlPatterns={"/ Example "})

@ServletSecurity(@HttpConstraint(EmptyRoleSemantic.DENY))

public class Example extends HttpServlet {

}

Example 4: for All HTTP methods except GET and POST, no constraints; for methods GET and
POST, auth-constraint requiring membership in Role R1; for POST, confidential transport required

@WebServlet (name=" Example ", urlPatterns={"/ Example "})

@ServletSecurity((httpConstraints = {

@HttpMethodConstraint(value = "GET", rolesAllowed = "R1"),

@HttpMethodConstraint(value = "POST", rolesAllowed = "R1",

transportGuarantee = TransportGuarantee.CONFIDENTIAL)

})

public class Example extends HttpServlet {

}

25 Servlet 3.0 security © 2011 IBM Corporation

This slide provides two more examples of Servlet 3.0 security annotations.

The first example denies access for all HTTP methods.

In the second example all HTTP methods except GET and POST are handled with no
constraints. For GET and POST requests, auth-constraint requiring membership in Role
R1 and for POST, confidential transport is required.

WASV8_Servlet30.ppt Page 25 of 41

Servlet security annotations examples (3 of 4)

Example 5: for all HTTP methods, auth-constraint requiring membership in Role R1

@WebServlet (name=" Example ", urlPatterns={"/ Example "})

@ServletSecurity(@HttpConstraint(rolesAllowed = "R1"))

public class Example extends HttpServlet {

}

Example 6: for All HTTP methods except GET and POST, no constraints; for methods GET , auth
constraint requiring membership in Role R1; for POST, all access denied

@WebServlet (name=" Example ", urlPatterns={"/ Example "})

@ServletSecurity((httpMethodConstraints = {

@HttpMethodConstraint(value = "GET", rolesAllowed = "R1"),

@HttpMethodConstraint(value=" POST“, emptyRoleSemantic =

EmptyRoleSemantic.DENY))

})

public class Example extends HttpServlet {

}

26 Servlet 3.0 security © 2011 IBM Corporation

This slide also provides two examples of Servlet 3.0 security annotations.

The first example has an auth-constraint requiring membership in Role R1 for all HTTP
methods.

The second example handles all HTTP methods except GET and POST with no
constraints. GET requests require membership in role R1, and all POST requests are
denied.

WASV8_Servlet30.ppt Page 26 of 41

Servlet security annotations examples (4 of 4)

Example 7: for all HTTP methods except GET auth-constraint requiring membership in Role R1; for
GET, no constraints

@WebServlet (name=" Example ", urlPatterns={"/ Example "})

@ServletSecurity(value = @HttpConstraint(rolesAllowed = "R1"),

httpMethodConstraints = @HttpMethodConstraint("GET"))

public class Example extends HttpServlet {

}

Example 8: for all HTTP methods except TRACE, auth-constraint requiring membership in Role R1;
for TRACE, all access denied

@WebServlet (name=" Example ", urlPatterns={"/ Example "})

@ServletSecurity(value = @HttpConstraint(rolesAllowed = "R1"),

httpMethodConstraints = @HttpMethodConstraint(value="TRACE",

emptyRoleSemantic = EmptyRoleSemantic.DENY))

public class Example extends HttpServlet {

}

27 Servlet 3.0 security © 2011 IBM Corporation

This slide shows more two examples of Servlet 3.0 security annotations.

The first example handles GET requests with no constraints. All other requests require
membership in role R1.

The second example denies access to TRACE requests, and all other requests require
membership in role R1.

WASV8_Servlet30.ppt Page 27 of 41

Mapping @ServletSecurity to security constraint

� When metadata-complete attribute is set in DD, the @ServletSecurity annotation has no
affect on security constraint.

� When a security-constraint in the portable deployment descriptor includes a urlPattern that is
an exact match for a pattern mapped to a class annotated with @ServletSecurity, there is
no effect on the constraint.

� With the exceptions listed above, when a Servlet class is annotated with @ServletSecurity,
the annotation defines the security constraints that apply to all the urlPatterns mapped to all
the Servlets mapped to the class.

28 Servlet 3.0 security	 © 2011 IBM Corporation

This slide describes rules for mapping the @ServletSecurity annotation to a security
constraint. Note that if the “metadata complete” attribute has been set in the deployment
descriptor, the @ServletSecurity annotation will be ignored.

WASV8_Servlet30.ppt	 Page 28 of 41

Mapping @ServletSecurity to security constraint

Example 1:
emptyRoleSemantic=PERMIT, rolesAllowed={}, transportGuarantee=NONE

web.xml:

no constraints

Example 2:

emptyRoleSemantic=PERMIT, rolesAllowed={},

transportGuarantee=CONFIDENTIAL

web.xml:

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

29 Servlet 3.0 security © 2011 IBM Corporation

This slide shows two examples of the @ServletSecurity annotation and their equivalents in

the web.xml file.

The first example has no security constraints and data protection is NONE.

The second example has no security constraints and data protection is CONFIDENTIAL.

WASV8_Servlet30.ppt Page 29 of 41

Mapping @ServletSecurity to security constraint (1 of 2)

Example 3:
emptyRoleSemantic=PERMIT, rolesAllowed={Role1}, transportGuarantee=NONE

web.xml:

<auth-constraint>

<security-role-name>Role1</security-role-name>

</auth-constraint>

Example 4:

emptyRoleSemantic=PERMIT, rolesAllowed={Role1},

transportGuarantee=CONFIDENTIAL

web.xml

<auth-constraint>

<security-role-name>Role1</security-role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

30 Servlet 3.0 security © 2011 IBM Corporation

This slide shows two more examples of the @ServletSecurity annotation and their
deployment descriptor equivalents.

The first example allows access for users in the role “Role1” and data protection is NONE.

The second example allows access for users in the role “Role1” and data protection is
CONFIDENTIAL.

WASV8_Servlet30.ppt Page 30 of 41

Mapping @ServletSecurity to security constraint (2 of 2)

Example 5:

emptyRoleSemantic=DENY, rolesAllowed={},

transportGuarantee=CONFIDENTIAL

web.xml

<auth-constraint/>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

31 Servlet 3.0 security © 2011 IBM Corporation

This example will deny access for all roles, and CONFIDENTIAL data protection is
required.

WASV8_Servlet30.ppt Page 31 of 41

@Inherited

� The @ServletSecurity annotation may be specified on (that is, targeted to) a Servlet
implementation class, and its value is inherited by sub classes according to the rules defined
for the @Inherited meta-annotation.

� If you have the @ServletSecurity annotation on a super class, then the security constraint
will apply to the sub classes that did not have any @ServletSecurity.

� If you want to override the security constraint in the sub class, then you can specify the
@ServletSecurity

32 Servlet 3.0 security	 © 2011 IBM Corporation

These are rules that apply to the @Inherited annotation. The @Inherited annotation can
be used to specify that metadata specified by an @ServletSecurity annotation should be
inherited by a Servlet class’ subclasses.

WASV8_Servlet30.ppt	 Page 32 of 41

© 2011 IBM Corporation33 Servlet 3.0 security

Dynamic security annotationsDynamic security annotations

Section

This section covers support for dynamic security annotations in Servlet 3.0.

WASV8_Servlet30.ppt Page 33 of 41

Dynamic Servlet security annotations

� ServletRegistration.Dynamic
– setServletSecurity(ServletSecurityElement constraint)
– setRunAsRole(String roleName)

� ServletContext.declareRoles(String roleNames)

� These methods can be used within a ServletContextListener to define the security
constraints to be applied to the mappings defined for a ServletRegistration

� These methods apply to all mappings added to this ServletRegistration up until the point that
the ServletContext from which it WebSphere Application Server obtained has been initialized

34 Servlet 3.0 security	 © 2011 IBM Corporation

Servlet 3.0 security provides dynamic security annotations. You can use the methods
setServletSecurity(), setRunAsRole and declareRoles to control access control in the
dynamic servlet.

If the dynamic security annotations declareRoles, setRunAsRole and rolesAllowed, are
used, the role name must be pre-defined, either through the deployment descriptor or
through the @declareRoles and or @RunAs annotations in the servlet class. At
deployment time, you can use the administrative console to map a user or group to this
role.

WASV8_Servlet30.ppt	 Page 34 of 41

Servlet security annotation merge action

� If a URL pattern of this ServletRegistration is an exact target of a security-constraint that
WebSphere Application Server established in the portable deployment descriptor, then this
method does not change the security-constraint for that pattern, and the pattern will be
included in the return value.

� The setServletSecurity method returns the (possibly empty) Set of URL patterns that are
already the exact target of a security-constraint element in the DD (and thus were unaffected
by the call).

� When a security-constraint in the DD includes a URL pattern that is an exact match for a
pattern mapped by a ServletRegistration, calls to setServletSecurity on the
ServletRegistration must have no effect on the constraints enforced by the Servlet container
on the pattern.

35 Servlet 3.0 security	 © 2011 IBM Corporation

This slide describes how security-related annotations are merged with security-related
metadata that is contained in the web deployment descriptor.

WASV8_Servlet30.ppt	 Page 35 of 41

securityConstraints
RunAsMap
JACC …

web_merged.xml

Security
annotations

MergeWebRunAs
MergeWebDeclares
ServletSecurityMerge

setRunAs()
declareRoles()

setServletSecurity()

Dynamic security
annotation injection

rolesAllowed

web.xml
@RunAs

@DeclareRoles
@ServletSecurity

V7 -> V8

36 Servlet 3.0 security © 2011 IBM Corporation

WebSphere Application Server V7 supported the @RunAs and @DeclareRoles security
annotations; WebSphere Application Server V8 added support for the @ServletSecurity
annotation. The ServletSecurityMerge function merges only the rolesAllowed; other
security constraints are merged by the web container and security components.

WASV8_Servlet30.ppt Page 36 of 41

@ServletSecurity example

HttpConstraintElement constraint = new HttpConstraintElement()

List<HttpMethodConstraintElement> methodConstraints =

new ArrayList<HttpMethodConstraintElement>();

//Method GET permits role “Manager”

methodConstraints.add(new HttpMethodConstraintElement("GET",

new HttpConstraintElement(TransportGuarantee.NONE,

new String[]{“Manager"})));

ServletSecurityElement servletSecurityElement =

new ServletSecurityElement(constraint,

methodConstraints);

//Set the Servlet Security Constraints on servletRegistration.Dynamic

servletRegDynamic.setServletSecurity(servletSecurityElement);

37 Servlet 3.0 security © 2011 IBM Corporation

This slide provides an example of dynamic security annotation for the GET method that
requires the role of Manager for a dynamic Servlet.

WASV8_Servlet30.ppt Page 37 of 41

Summary

� Servlet 3.0 security updates in WebSphere Application Server V8
– Display the realm name for basic HTTP login prompts
– Login, authenticate, and logout methods
– HTTP method omission element in web.xml
– Security annotations
– Dynamic security annotations

38 Servlet 3.0 security © 2011 IBM Corporation

The Servlet 3.0 specification introduces several new security features, and WebSphere
Application Server V8 implements support for these new features. When prompting users
to login with HTTP, the realm name will now be displayed in the user’s web browser.
There is now also support for programmatically logging in, authenticating, and logging out
users using standard methods. The “http-method-omission” element provides a simple
way to exclude certain HTTP methods from security constraints using the web deployment
descriptor. Support for security annotations allows developers to define security-related
metadata directly in Servlet code, rather than using the web deployment descriptor.
Dynamic support for annotations provides a means for dynamic injection of security
constraints and role mappings from Java code.

WASV8_Servlet30.ppt Page 38 of 41

Resources and references

� Servlet 3.0 specification

http://jcp.org/en/jsr/detail?id=315

� ServletRegistration dynamic Java document

http://java.sun.com/javaee/6/docs/api/javax/servlet/ServletRegistration.Dynamic.html

� Security annotation Java document

http://java.sun.com/javaee/6/docs/api/javax/servlet/annotation/ServletSecurity.html

� Servlet security methods section of the information center

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/rsec_secgetru.html

39 Servlet 3.0 security © 2011 IBM Corporation

See these resources and references for additional information on Servlet 3.0 security
support in WebSphere Application Server V8.

WASV8_Servlet30.ppt Page 39 of 41

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASV8_Servlet30.ppt

This module is also available in PDF format at: ../WASV8_Servlet30.pdf

40 Servlet 3.0 security © 2011 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASV8_Servlet30.ppt Page 40 of 41

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. Other company, product, or
service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

41 © 2011 IBM Corporation

WASV8_Servlet30.ppt Page 41 of 41

