

© 2012 IBM Corporation

IBM WebSphere Application Server V8.5

Batch overview

This module provides an overview of the Batch feature of IBM WebSphere Application
Server V8.5.

WASv85_Batch_Overview.ppt Page 1 of 39

© 2012 IBM Corporation 2 Batch overview

Batch processing

Comparison of online transaction processing and batch processing

� A request / receive model

(Often but not necessarily synchronous)

� Duration of processing relatively short

� Often transactional in nature

� Application server runtime enforces
timeouts for workload

�A submit / work / result set model

(Asynchronous to the submitter)

�Duration of processing a function of
work to be done; can be hours/days

�Often transactional in nature

�Often multi-step processes

Online Transaction Processing Batch Processing
(or Long Running)

Submit

Response

Work on
Record

Request

Response

Online transaction processing is a request/receive model where the duration of the
processing is relatively short, and the tasks are typically transactional in nature. In this
model, the application server runtime enforces timeouts for the workload.

Batch processing is a submit/work/result set model where the duration of the processing is
a function of the tasks to be completed. In some cases, the tasks can require hours or
even days to complete. In this model, the work tasks are typically transactional in nature
and typically involve multi-step processes.

WASv85_Batch_Overview.ppt Page 2 of 39

Batch modernization
Providing greater flexibility / control of batch window processing

Moving to a continuously available batch model intermixed with OLTP

Using goal-oriented workload management to enable job completion within deadlines

SOA transformation - Running batch as a service

Hosting batch processes within SOA-capable application server environments

Optimally reusing services through efficient co-location

Leveraging Java skills for all applications

Utilizing Java for batch processing and OLTP

Reducing cost of running batch on z/OS

Moving batch processing to Java to take advantage of zAAP specialty engines

Utilizing processor resources available when OLTP workloads are light

Modernization does not mean wholesale replacement of existing batch function that
serves the business needs. Business imperatives drive technical solutions

3 Batch overview © 2012 IBM Corporation

Batch modernization involves specialized techniques to achieve job completion within
deadlines, optimal reuse, leverage of JAVA skills, and reducing cost by way of System z
Application Assist Processor (zAAP) specialty engines.

Greater flexibility and control of batch window processing is realized by moving to a
continuously available batch model intermixed with online transaction processing. This
coupled with using goal oriented workload management enables job completion within
deadlines. Hosting batch processes within service oriented architecture (SOA) capable
WebSphere Application Server environments lend to optimally reusing services through
efficient co-location. Leveraging Java skills for batch and online transaction processing
tasks helps reduce cost. Additionally cost reduction is achieved on the z/OS platform by
moving batch processing to JAVA and taking advantage of System z Application Assist
Processor (zAAP) specialty engines and utilizing processor resources available when
online transaction processing workloads are light.

WASv85_Batch_Overview.ppt Page 3 of 39

© 2012 IBM Corporation 4 Batch overview

Use JVM launcher

This approach works, but has limitations:

� High overhead associated with repeated cycling of JVMs

� Application must provide most batch processing services

Many attempt to use a JVM launcher to run Java batch programs

JCL

JVM Initialized JVM Terminated Java Batch Run

Java
Program

Java Virtual
Machine

Java Virtual Machine (JVM) launcher technologies are free and easy to use, and the
programming interfaces are very useful; however, a new JVM is created for every step,
and the resulting overhead is significant. In addition, JVM launcher technologies do not
provide a transaction manager. Ultimately, the application developer must author a
transaction manager within their application.

On the z/OS platform, WebSphere Application Server complements the Java Batch Toolkit
for z/OS (JZOS). The JZOS launcher can be used when only a few Java batch steps must
be executed. Once the size of the Java batch infrastructure grows to the point where the
overhead of creating and terminating JVMs is an issue, the Batch feature of WebSphere
Application Server can be used. The second component of JZOS, it’s API’s for accessing
z/OS resources, can be used from WebSphere Application Server applications.

WASv85_Batch_Overview.ppt Page 4 of 39

© 2012 IBM Corporation 5 Batch overview

Use application server runtime
A second approach uses the application server runtime and authors the batch application as a
message driven bean or an asynchronous bean

In both cases, the application developer must author custom middleware to support the batch
processing

WebSphere Application Server JVM

Batch Processing Code

1

2
Servlet or
Session

Bean

Message
Driven
Bean

Asynchronous
Bean

1. When a message driven bean is
used, the application must
manage the timeout on the
message driven bean input

2. The preferred technique (used by
WebSphere Application Server
and WebSphere Extended
Deployment Compute Grid) is to
use an asynchronous bean

An application server runtime is another option that can be used to run the batch
application. However, this solution is lacking features that need to be implemented as
custom middleware.

Examples of custom middleware functionality that would need to be implemented include:
A batch programming model and development tooling, interweaving of online transaction
processing tasks and batch tasks, check pointing and restarting of jobs, integration with
enterprise schedulers, graphical and command line interfaces for job monitoring and
management, job usage accounting, and activity logging.

WASv85_Batch_Overview.ppt Page 5 of 39

© 2012 IBM Corporation 6 Batch overview

Java batch complexity

Requires job control interface into JVM

Requires workload management, classification,
and throttling based on priorities

JVM launcher

WebSphere Application Server
asynchronous beans

Requires custom code

Single-step Java program
that accesses UNIX data

Asynchronous processing
inside application server

Checkpoint and restart
processing

Pause and resume jobs
within JVM

Manage resource usage
to meet deadlines

Initial Java batch programming projects typically begin with a relatively simple Java Virtual
Machine (JVM) launcher design, but it grows more complex over time as additional
management features are required. These projects frequently progress in the following
manner:

An organization uses the Java command line interface or the Java Batch Toolkit for z/OS
(JZOS) to run a single-step Java program that accesses UNIX data. After realizing that
transaction management capabilities are required, the organization moves the application
to a Java Enterprise Edition (Java EE) application server.

As the organization begins to process large numbers of records as a single batch job, it
finds that it is no longer practical to restart entire jobs when failures occur in the middle of
a job. The organization then introduces check pointing and restart capability. A large
number of jobs in the batch environment compete for the same resources, and
administrators need a way to manage the jobs and handle resource conflicts. The
organization then builds a job control interface into the JVM that processes the batch
applications.

As batch loads increase even further, it becomes impossible to manually handle resource
conflicts; as a result, the organization now requires a batch job management system that
can optimally distribute workloads based on priorities and deadlines.

WASv85_Batch_Overview.ppt Page 6 of 39

© 2012 IBM Corporation 7 Batch overview

Custom middleware versus core business

Disadvantages of custom batch
middleware solutions

Removes focus from core
business objectives

Expensive to build

Very expensive to support

May limit progress

Easy to end up with isolated
islands of custom batch
solutions outside a cohesive
managed framework

Your code that
addresses the
business batch
requirements

Your code that
provides custom
middleware
functionality

Vendor supplied
and supported
middleware
functionality

Business
executives
prefer a focus
on the core
business

Business
executives
prefer to
avoid
custom
middleware

Organizations are frequently tempted to solve tactical issues with custom middleware
code; however, the middleware code requires extensive time to develop and maintain,
which ultimately decreases an organization’s ability to develop custom code that
addresses core business objectives.

WASv85_Batch_Overview.ppt Page 7 of 39

© 2012 IBM Corporation 8 Batch overview

IBM Java Batch offerings

Java batch tasks can be managed in several different ways. For example, simple Java
Virtual Machine (JVM) launchers can manage single step batch jobs that require basic
data access.

On the z/OS platform, specifically, the Java Batch Toolkit for z/OS (also known as JZOS)
enhances the BPXBATCH model by supporting conditional multi-step batch jobs with
access to MVS datasets and use of Data Definition (DD) cards.

The prior version of WebSphere provided multi-step job support, a managed container for
execution of batch jobs, a job control interface, job checkpoint and restart capability, and a
batch application development framework. In WebSphere Application Server version 8.5,
the capabilities of the prior release are expanded upon. For example: support for job
repository and schedules, workload management, job usage reporting, batch application
quiesce and update, parallel job support, and pacing and throttling of jobs.

WASv85_Batch_Overview.ppt Page 8 of 39

© 2012 IBM Corporation 9 Batch overview

Batch container

Application Server

Function that
dispatches the job

to the Batch
Container

WebSphere Application Server Platform Native Code

IBM Batch Container
Classes and API’s

Batch Application
Job Steps
Data Access
Checkpoints
Results

Batch Container

Batch
Controller
Bean

Batch Controller Bean controls
the batch application and
processes the job definition
from start to finish

The Batch Container is the heart of the WebSphere Application Server Batch function

Java Virtual Machine

The Batch Container is the heart of the batch application support provided in WebSphere
Application Server. It runs a batch job under the control of an asynchronous bean, which
can be thought of as a container-managed thread. The batch container ultimately
processes a job definition and carries out the life cycle of a job.

The Batch Container provides these services:

-Check pointing, which involves resuming batch work from a selected position.

-Result processing, which involves intercepting and processing step and job return codes.

-And Batch data stream management, which involves reading, positioning, and
repositioning data streams to files, relational databases, native z/OS datasets, and many
other different types of input and output resources.

WASv85_Batch_Overview.ppt Page 9 of 39

Application Server

WebSphere App cat on Server P atform Nat ve Code

Java V rtua Mach ne

IBM Batch Container
Classes and API s

Batch App cat on
Job S eps
Da a Access
Checkpoin s
Results

Ba ch Con ainer

Ba ch
Con roller
Bean

© 2012 IBM Corporation10 Batch overview

Batch components and workflow

li i l i

i l i

’

li i
t

t
t

t t

t
t

Application Server

WebSphere Application Server Platform Native Code

Java Virtual Machine

IBM Batch Container
Classes and API’s

Batch Application
Job Steps
Data Access
Checkpoints
Results

Batch Container

Batch
Controller
Bean

1

5

6

1. Job is submitted

2. Job Control Definition is specified

3. Scheduler analyzes the request

4. Job is dispatched to batch endpoint

5. Batch endpoint begins execution

6. Batch application is invoked

Application Server

WebSphere Application Server
Platform Native Code

Batch
Scheduler

Collection of
servlets, JSPs

and EJBsxJCL2

3

Java Virtual Machine

Batch jobs are submitted to the system using the Job Management Console or
programmatically by way of Enterprise Java Beans (EJB), Java Message Service (JMS),
or web services.

Each job is submitted in the form of an XML Job Control Language (xJCL) document. The
Job Dispatcher then selects the best endpoint application server for job execution based
on several different metrics.

The endpoint application server sets up the jobs in the Batch Container and executes the
batch steps based on the definitions in the xJCL.

While the job is running, the Job Dispatcher aggregates job logs and provides lifecycle
management functions such as start, stop, cancel, and so on.

WASv85_Batch_Overview.ppt Page 10 of 39

© 2012 IBM Corporation 11 Batch overview

Batch programming model

Job Control (xJCL) Batch Controller Bean
Part of the Batch Container

code supplied by IBM

Batch Data Streams
Provides data input and output

services for the job steps

Checkpoint Algorithms
Service to programmatically determine

and handle check pointing

Results and Return Codes
Services to determine, manipulate and

act upon return codes, both at the
application and system level

Batch Container

Development
Libraries

RAD or Eclipse

WebSphere Application Server
Runtime Interfaces

JDBC, JCA, Security, Transaction,
Logging, Deployment, etc., etc.

Job Step Control
Invoking and coordinating
processing between steps

Batch App
POJO

Step 1

Step 2

Step n

The batch programming model consists of four principal interfaces, two of which are
essential to building a batch application, and two which are optional and intended for
advanced scenarios.

The first essential item is the batch job step, which defines the interaction between the
batch container and the batch application.

The other essential item is the batch data stream. The batch data stream abstracts a
particular input source or output destination for a batch application and defines the
interaction between the batch container and a concrete BatchDataStream implementation.

An optional checkpoint policy algorithm defines the interaction between the batch
container and a custom checkpoint policy implementation. A checkpoint policy is used to
determine when the batch container will checkpoint a running batch job to enable a restart
to occur after a planned or unplanned interruption. WebSphere Application Server includes
two ready-to-use checkpoint policies.

An optional results algorithm defines the interaction between the batch container and a
custom results algorithm. The purpose of the results algorithm is to provide the overall
return code for a job. The algorithm has visibility to the return codes from each of the job
steps. WebSphere Application Server includes one ready-to-use results algorithm.

WASv85_Batch_Overview.ppt Page 11 of 39

© 2012 IBM Corporation 12 Batch overview

Job control definition - xJCL

<?xml version="1.0" encoding="UTF-8" ?>

<job name="name" ... >
<jndi-name>batch_controller_bean_jndi</jndi-name>
<substitution-props>

<prop name="property_name" value="value" />
</substitution-props>

<job-step name="name">
<classname>package.class </classname>

<checkpoint-algorithm-ref name="chkpt"/>
<results-ref name="jobsum"/>
<batch-data-streams>

<bds>
<logical-name>input_stream </logical-name>

<props>
<prop name="name" value="value"/>

</props>
</bds>

</batch-data-streams>
</job-step>

<job-step

</job>

Roughly analogous
to the JOB card on z/OS

A job step

Like the EXEC PGM=
statement in JCL

Similar to DD
statements

Jobs are expressed using an Extensible Markup Language (XML) dialect called XML Job
Control Language, or xJCL.

The xJCL definition is very similar to the traditional JCL.

The xJCL definition of a job is not part of the batch application, but is constructed
separately and submitted to the job scheduler to run. The job definition identifies which
batch application to run, and it’s inputs and outputs. It also identifies which checkpoint
algorithms and results algorithms to use.

The Job Scheduler uses information in the xJCL to determine where and when the job
should run.

WASv85_Batch_Overview.ppt Page 12 of 39

© 2012 IBM Corporation 13 Batch overview

Batch environment review

WebSphere Application
Server Runtime

System Platform

Platform exploitation below the
open standard specification line

Batch Container
Your batch applications
deployed into the batch-
enabled server or cluster

Eclipse
or

RAD

Batch Data Stream
Development

Framework Classes

Application Server JVM

xJCL Job
Definition File

Job
Scheduler

Job
Console

Browser
Web Services
EJB IIOP

Scheduler
dispatches to
end points based
on knowledge of
environment

The Job Scheduler provides the job management functions such as submit, cancel,

restart, and so on. It maintains a history of all job activity, including waiting jobs, and

running jobs, and completed jobs. The job scheduler is hosted in a WebSphere Application

Server or a server cluster.

Jobs are described using job control language called XML Job Control Language (xJCL),

which identifies the batch application to run and it’s inputs and outputs. The Batch

Container provides the execution environment for batch jobs. There can be multiple Batch

Containers in a WebSphere cell. Batch applications are regular WebSphere Java

Enterprise Edition (Java EE) applications, deployed as Enterprise Archive (EAR) files.

WASv85_Batch_Overview.ppt Page 13 of 39

What is new in this release

WebSphere Application Server 8.5 has updated its Batch support to include new functionality
in these areas

�Programming model enhancements

�Operational enhancements

14 Batch overview © 2012 IBM Corporation

WebSphere Application Server 8.5 contains enhancements to the Batch programming
model and operational features.

WASv85_Batch_Overview.ppt Page 14 of 39

© 2012 IBM Corporation15 Batch overview

Programming model enhancementsProgramming model enhancements

Section

This section describes the Batch programming model enhancements included in
WebSphere Application Server 8.5

WASv85_Batch_Overview.ppt Page 15 of 39

© 2012 IBM Corporation 16 Batch overview

Parallel Batch – parallel Job Manager

� Parallel Job Manager (PJM) decomposes a large work request into many
smaller work requests (sub-jobs)

� PJM then provides operational control over the sub-jobs executing across the
job endpoints – note sub-jobs are clones

� Administrator only manages the top-level (logical) job; PJM, in the
background, manages the sub-jobs

Top Level
Job

Data
Partitions

Sub Job
Input
Data

logical transaction

The Parallel Job Manager provides support for building transactional batch applications as
a job, and then divides the job into subordinate jobs. The subordinate jobs can run
independently and in parallel. The Parallel Job Manager is used to submit and manage the
transactional batch jobs.

WASv85_Batch_Overview.ppt Page 16 of 39

© 2012 IBM Corporation 17 Batch overview

Parallel Batch - PJM Application Programming Interfaces

The Batch programming model has been updated to provide APIs for the Parallel Job
Manager.

The purpose of the Parameterizer API is to divide the top-level job into multiple sub-jobs.
The Parameterize API determines the number of sub-jobs to create, and the input
properties passed to each sub-job.

The Synchronization API gives you control during the various life cycle stages of the
logical transaction. For example, the Begin, beforeCompletion, and afterCompletion life
stages. You can use these control points to roll back the logical transaction if necessary.

The SubJobCollector API collects information related to a subordinate job execution.

The SubJobAnalyzer API is used to analyze information collected previously by using the
SubJobCollector API. In a typical implementation, the SubJobAnalyzer API is used to
aggregate information obtained from all sub-jobs to determine the consolidated return
code for the top-level job.

WASv85_Batch_Overview.ppt Page 17 of 39

-

-

© 2012 IBM Corporation 18 Batch overview

Parallel Batch – xJCL examples

� Ability to specify parallelization
configuration per job step

� Supports any step type

� Step might be multi-threaded or
multi-process (that is, multiple JVMs)

<job name=… >
<step name=… >

<run instances=”multiple”
jvm=“single” />

…
</step>
<step name=… >

<run instances=”multiple”
jvm=“multiple” />

…
</step>

</job>

xJCL:

Multi threaded step

Multi process step

Parallel step support allows you to run some steps of a job as parallel jobs themselves.
This approach is different from running two steps concurrently (a capability that is not
currently supported). A parallel step can be thought of as a top level job, with the sub-job
xJCL generated using the step's own xJCL snippet.

WASv85_Batch_Overview.ppt Page 18 of 39

© 2012 IBM Corporation 19 Batch overview

Parallel Batch - multi-threading

� Option to run parallel job on multiple
threads

� Parallel Job Manager local optimization

� Alternative to running parallel job across
multiple JVMs

� Optimizes shorter running sub jobs

<job name=… >
<run instances=”multiple”

jvm=“single” />
<step name=… >
…
</step>

</job>

xJCL:

Runtime: Top job

Sub job

Thread Thread Thread

Sub job Sub job

WebSphere Batch allows the running of parallel jobs and their sub-jobs in the same JVM if
needed. This capability is especially useful when sub-jobs are typically very short in
duration and the overhead of distributing the sub-jobs across servers is much larger
compared to the actual work to be completed.

WASv85_Batch_Overview.ppt Page 19 of 39

© 2012 IBM Corporation 20 Batch overview

COBOL support

� Call standard COBOL (z/OS only)
modules from Java on same thread
in same process

� Java and COBOL run in same
transaction scope

� DB2 connections managed by
WebSphere Application Server can
be shared with COBOL

� COBOL working storage isolation per
job step

� RAD tools for Java call stub
generation

Reuse existing COBOL in
new Java Batch
Applications!

Java

WCG
Job

COBOL

B
atch A

pplication
V

alue

COBOL has been the prevalent language to run batch-style workloads in the past, and
even today there is a large existing base of COBOL code. On the z/OS platform, Java
batch adds support to easily call into existing COBOL assets to run modern batch
workloads.

WASv85_Batch_Overview.ppt Page 20 of 39

© 2012 IBM Corporation 21 Batch overview

OSGi batch applications

� Enables use of OSGi for Java batch
application development

� Full batch programming model available
to OSGi framework

� Supports standard and blueprint bundles

� Enterprise Bundle Archive deployment

bundle

WebSphere Application Server

bundle …

.eba

Java batch
Job

WebSphere Batch enables you to re-use your existing blueprint OSGi applications to run
batch workloads. Batch artifacts are exported as blueprint services which are invoked by
the batch container during the job life cycle.

WASv85_Batch_Overview.ppt Page 21 of 39

Record processing policy

Skip records for
exceptions:
ExpA, ExpB, …
Stop after N skips

Retry step for
exceptions:
ExpX, ExpY, …
Delay M seconds
Retry N times

Batch container
calls optional
application
listeners

22 Batch overview

RetryListener
Implementation

input

Job step

SkipListener
Implementation

� Declarative policy for skipping bad
records and retrying record processing
failures

� Skip bad records and retry processing
failures based on specified exception
lists

� Stop job according to skipped record
threshold

� Retry job step with optional delay
according to retry count

� Optional programmatic control

© 2012 IBM Corporation

WebSphere Batch includes two different declarative record processing policies, skip
records and step retry. The skip records policy covers the input stream, and the step retry
policy covers record processing and the output stream.

The step retry policy is NOT related to skipped records. It will automatically retry a failed
step since its last checkpoint.

WASv85_Batch_Overview.ppt	 Page 22 of 39

Record metrics

Programmatic
access to
metrics

Batch
container
collects metrics

Metrics
reported in job
log

23 Batch overview

Job step

Job Log
…
Step ended
N records skipped
M retries
R records/sec
T seconds

JobStepContext

� Key processing metrics collected by
batch container:

–	 Skipped record count
–	 Retry count
–	 Records/second
–	 Total processing time

� Values written to job log at end of
step

� Available to batch application
through JobStepContext object

© 2012 IBM Corporation

The record metrics feature provides convenient statistics about the records processed by
each job step. Key statistics include the skipped record count, retry count, records
processed per second, and total processing time. The values are written to the job log at
the end of a step, and are available to a batch application through the JobStep Context
object.

WASv85_Batch_Overview.ppt	 Page 23 of 39

Configurable transaction model

Job Step

BatchDataStream

Checkpoint
Algorithm

Results
Algorithm

T
ra

ns
ac

tio
n

S
co

pe
 � Selectable job step transaction mode:

– Local

– Global

� Applies to all batch step artifacts:

– Job step

– Batch data stream

– Check point and results algorithms

24 Batch overview © 2012 IBM Corporation

WebSphere Batch adds support for a local transaction mode of operation. In this mode, no
global transaction is started; the connection object is shared between the container and
your code through the JobStep Context object. Local transaction mode significantly
improves performance by reducing the overhead required to manage global transactions.
This mode is especially useful if your data is located on the same database system as the
Job Scheduler tables. In addition, large cursors are less likely to be closed when
transactions are committed.

WASv85_Batch_Overview.ppt Page 24 of 39

Batch data stream timeouts

xJCL:

<job name=… >

<step name=…>

<batch-data-streams timeout=N>

<bds>…</bds>
<bds>…</bds>
<bds>…</bds>

</batch-data-streams>

</step>

</job>

25 Batch overview

� Problem

–	 Job steps need short
transaction timeouts

–	 Batch data streams (large
results sets) need long
timeouts

� Solution

–	 Configurable batch data
stream timeout

–	 Can be specified per job
step

© 2012 IBM Corporation

WebSphere Batch allows you to configure a batch data stream timeout for each job step;
as a result, you can now define short timeouts for transactions, and long timeouts for
BatchDataStreams.

WASv85_Batch_Overview.ppt	 Page 25 of 39

Job and step listener

JobStepContext

Job Step

JobListener
Implementation

Batch
Container

Job

• Job start/end

• Step start/end

• Job start/end

• Step start/end

� Optional programming model extension

� Notifies job and step life cycle events:

–	 Job start

–	 Job end

–	 Step start

–	 Step end

� Job and step information available to
Listener through JobStepContext object

26 Batch overview	 © 2012 IBM Corporation

The job and step listener allows application developers to add cross-cutting initialization
and clean up routines to jobs and steps. The listener implementation is specified in a new
job-level xJCL element. The batch container invokes the listener at specific events: before
job start, after job start, before step start, and before step end. Data can be accessed
through the JobStep Context object.

WASv85_Batch_Overview.ppt	 Page 26 of 39

 Job StepJob Step

Persistent job context

JobStepContext

Checkpoint
Repository

Job

Job Step

� JobStepContext object updated to
exist for life of job (instead of just life
of step)

� Step-specific context reset at each
job step

� New persistent user data object
stored across checkpoint/restart

27 Batch overview	 © 2012 IBM Corporation

Job and Step context information are available with the updated WebSphere Batch
support.

The JobStep Context information is available to all job types and exists for the life of the
job, as opposed to the life of a step.

Step specific context information is reset at each job step. Any new step-level user data is
persisted to a database at each checkpoint so that it is available at job restart.

WASv85_Batch_Overview.ppt	 Page 27 of 39

© 2012 IBM Corporation28 Batch overview

Operational enhancementsOperational enhancements

Section

This section describes the Batch operational enhancements included in WebSphere
Application Server 8.5

WASv85_Batch_Overview.ppt Page 28 of 39

© 2012 IBM Corporation 29 Batch overview

Integration with an external scheduler

Enterprise
Scheduler WSGrid

In Queue

Out Queue

Job
Scheduler

xJCL

msg

GEE

Job

GEE

Job

Dynamic Scheduling

-Central enterprise scheduler, Job Scheduler told what to execute.

-Jobs and commands are submitted from Enterprise Scheduler to Job Scheduler by
way of WSGRID

-Jobs can dynamically schedule to Enterprise Scheduler by way of EJB interface

WebSphere Application Server 8.5 Batch provides an integration capability with external
workload schedulers, such as Tivoli Workload Scheduler.

An integration layer known as WSGrid enables Tivoli Workload Scheduler (and similar
products) to dispatch and monitor batch activities. This integration layer can also be used
by vendor workload scheduler products.

WASv85_Batch_Overview.ppt Page 29 of 39

© 2012 IBM Corporation 30 Batch overview

Group security (1 of 2)

job1

GroupA

user1

GroupA

jobN

GroupB

user10

GroupB

� User in GroupA can manage
jobs that belong to GroupA

� User in GroupB can manage
jobs that belong to GroupB

� Group-level security for jobs

• Leveraging WebSphere security
functions

• Enable in custom properties

• Configure to work with or without
security roles

� Users have access to jobs based on group
membership

� Job management console views are
customized based group security settings

In the prior version of WebSphere Batch, access to job management tasks and
information is controlled through role-based authentication, where each user must be
assigned the lradmin, lrsumitter, or lrmonitor role. This model is still supported. In an effort
to improve flexibility and streamline user management tasks, a new security model has
been introduced that enables a group of users to operate on a common subset of jobs. In
the graphic, a user from GroupA can manage jobs that belong to GroupA, and a user from
GroupB can manage jobs that belong to GroupB. If you belong to both GroupA and
GroupB, you can manage jobs from both groups.

Group security can be configured in combination with role-based security. When this
approach is used, you can perform a job-related action if and only if you and the job are
members of the same group, and your role permits the job action.

The default security model continues to be role-based. To change the security model, you
must define several custom properties at the level of the job scheduler.

WASv85_Batch_Overview.ppt Page 30 of 39

© 2012 IBM Corporation 31 Batch overview

Group security (2 of 2)

Job management console

When group-based security is enabled, the job management console includes the group
associated with each job. It is also possible to filter this view by group name.

WASv85_Batch_Overview.ppt Page 31 of 39

© 2012 IBM Corporation 32 Batch overview

Scheduling a job

The WebSphere Batch support has been updated to include the capability to schedule
jobs based on calendar and time.

WASv85_Batch_Overview.ppt Page 32 of 39

© 2012 IBM Corporation 33 Batch overview

Job log system programming interface (SPI)

joblog App Server
Log

Job Log SPI

LogLine1
LogLine2
LogLine3

LogLine1
AlteredLine
2
LogLine3

The job log system programming interface (SPI) allows system-wide customization and
control of job log content and destinations. You can use the job log SPI to direct the
logging information to only the job log, only the WebSphere Application Server log, both
logs, or neither log. The job log SPI can also be used to modify the content of the log line,
as shown in the graphic.

WASv85_Batch_Overview.ppt Page 33 of 39

© 2012 IBM Corporation 34 Batch overview

Mixed steps

Compute Intensive

Native Execution

Parallel

Transactional Batch
<job name=… >

<step name=“TxBatch” >
…
</step>
<step name=“MultiProcess”>

<run instances=”multiple”
jvm=“multiple” />

…
</step>
<step name=“CI” >
…

</step>
<step name=“ShellCmd”>
…
</step>

</job>

xJCL:

WebSphere Batch allows a job to contain different types of steps. For example, a job can
include a mixture of batch, compute intensive, and native job steps. This capability adds
immense flexibility to the batch programming model, as different parts of a job can be run
whether they are transactional or not.

WASv85_Batch_Overview.ppt Page 34 of 39

Java Batch and SMF

SMF is a fast activity recording subsystem on z/OS. The Java Batch support within
WebSphere Application Server 8.5 exploits this with its own SMF record:

35 Batch overview © 2012 IBM Corporation

SMF is a facility of the z/OS operating system that provides a high-speed activity recording
mechanism for programs that want to use it.

WebSphere Application Server for z/OS has an SMF record referred to as SMF 120
subtype 9. The Batch support within WebSphere Application server 8.5 also takes
advantage of SMF, and writes its own SMF 120 subtype 20.

WASv85_Batch_Overview.ppt Page 35 of 39

© 2012 IBM Corporation 36 Batch overview

WLM and job classification

WebSphere Batch makes use of the WLM classification capabilities of the underlying
WebSphere Application Server for z/OS product.

This provides a means by which requests can be isolated to separate servant regions,
where WLM can then apply resource allocation measures.

WASv85_Batch_Overview.ppt Page 36 of 39

© 2012 IBM Corporation 37 Batch overview

Memory overload protection

� Protection against over-scheduling
jobs to an application server

� Batch container monitors job memory
demand against available JVM heap
space

� Prevents Java OutOfMemoryError

� Automatic real time job memory
estimation with declarative xJCL
override

JVM Heap

Free
space

job

job job job job

job

Room for next job?

job …

Incoming jobs

Running jobs

<job name=… [memory=N] … > xJCL:

WebSphere Batch provides a memory overload protection feature that prevents the mix of
jobs on an endpoint server from causing a Java heap out of memory condition. A new
xJCL attribute, memory, allows you to declare the amount of memory required by a job.

The batch container monitors job memory requirements against its available heap space.
If a job enters the batch container, and the memory requirements of the job exceed the
available free space, the job is placed in wait state. As other jobs exit the BatchContainer
and resources are released, the held job is again evaluated against the available free
space.

This feature does not affect which endpoint server the job scheduler selects to process the
job. It ensures that the batch container on the selected endpoint does not run into an out
of memory condition because an excessive number of memory-intensive jobs are being
processed concurrently.

WASv85_Batch_Overview.ppt Page 37 of 39

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet
your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASv85_Batch_Overview.ppt

This module is also available in PDF format at: ../WASv85_Batch_Overview.pdf

38 Batch overview © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv85_Batch_Overview.ppt Page 38 of 39

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, DB2, System z, Tivoli, WebSphere, and z/OS are trademarks or registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of
other IBM trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

39 © 2012 IBM Corporation

WASv85_Batch_Overview.ppt Page 39 of 39

