

© 2012 IBM Corporation

IBM WebSphere Application Server V8.5

Classloader memory leak prevention, detection, and
remediation

This presentation describes support for Memory leak detection, prevention and
remediation included in IBM WebSphere® Application Server V8.5

WAS85_Classloader_Leak_Detection.ppt Page 1 of 16

© 2012 IBM Corporation2 Classloader memory leak prevention, detection, and remediation

OverviewOverview

Section

WebSphere Application Server Version 8.5 provides a top down pattern-based memory
leak detection, prevention, and action by watching for suspect patterns in application code
at run time. WebSphere Application Server provides some means of protection against
memory leaks when stopping or redeploying applications. If leak detection, prevention and
action are enabled, WebSphere Application Server monitors application and module
activity. It performs diagnostic actions to detect and fix leaks when an application or an
individual module stops. This feature helps increase application up time with frequent
application redeployments without cycling the server. This feature only applies to the full
WebSphere Application Server profile and NOT to the Liberty profile.

WAS85_Classloader_Leak_Detection.ppt Page 2 of 16

Memory leak detection, prevention and correction

� No application level memory leak detection and protect in prior release

Existing (v7 and up) APAR PM39870, improved classloader leak detection

NEW in V8.5 (Not in Liberty Profile)

� Prevention – Code to proactively fix suspect application classloader leak patterns

� Detection - Recognize Application triggered classloader leaks and provide diagnostics

� Fixing – Leverage existing JDK APIs and reflection to remedy classloader leaks.

� Enabled by setting the custom JVM properties

3 Classloader memory leak prevention, detection, and remediation © 2012 IBM Corporation

Before WebSphere Application Server V8.5, customers discovered classloader and
threadlocal leaks in the application server environment and in their applications. The
application server did not provide application level memory leak detection and protection.
Frequent application deployments result in OOM errors.

There are three parts to the memory leak feature in WebSphere Application Server V8.5:
detection, prevention, and action. Detection issues warnings when a memory leak is
detected through a combination of standard API calls and some reflection tricks when a
web application is stopped, un-deployed or reloaded. WebSphere Application Server
checks for known causes of memory leaks and issues warnings when an application leak
is detected. Prevention is on by default and applies only to JRE triggered leaks. JRE
triggered leaks are prevented by initializing singletons at server startup when the
application server class loader is the context class loader. Action takes proactive action to
fix memory leaks. These actions have reasonable defaults and are configured on a case-
by-case basis.

WAS85_Classloader_Leak_Detection.ppt Page 3 of 16

© 2012 IBM Corporation4 Classloader memory leak prevention, detection, and remediation

Usage scenariosUsage scenarios

Section

Following are usage scenarios for the classloader leak detection feature of WebSphere
Application Server V8.5.

WAS85_Classloader_Leak_Detection.ppt Page 4 of 16

Types of classloader memory leaks

JRE triggered leaks
– The context class loader becomes the web application class loader.
– A reference is created to the web application class loader. This reference is never

garbage collected.
– Pins the class loader, and all the classes loaded by it, in memory.

Application triggered leaks
– Custom ThreadLocal class
– Web application class instance as ThreadLocal value
– Web application class instance indirectly held through a ThreadLocal value
– ThreadLocal pseudo-leak
– ContextClassLoader and threads created by web applications
– ContextClassLoader and threads created by classes loaded by the common class loader
– Static class variables
– JDBC driver registration: RMI targets

http://wasdynacache.blogspot.com/2012/01/websphere­classloader­memory­leak.html

http://www.websphereusergroup.org.uk/wug/files/presentations/31/Ian_Partridge_­_WUG_classloader_leaks.pdf

http://www.ibm.com/support/docview.wss?uid=swg1PM39870

5 Classloader memory leak prevention, detection, and remediation © 2012 IBM Corporation

Many memory leaks manifest themselves as class loader leaks. A Java class is uniquely
identified by its name and the class loader that loaded it. Classes with the same name can
be loaded multiple times in a single JVM, each in a different class loader. Each web
application gets its own class loader and this is what WebSphere Application Server uses
for isolating applications.

An object retains a reference to the class it is an instance of. A class retains a reference to
the class loader that loaded it. The class loader retains a reference to every class it
loaded. Retaining a reference to a single object from a web application causes every class
loaded by the web application to be retained in memory. These references often remain
after a web application reload. With each reload, more classes are retained in memory
which leads to an out of memory error.

Class loader memory leaks are normally caused by the application code or JRE triggered
code. JRE triggered leaks are memory leaks that occur when the Java Runtime
Environment (JRE) code uses the context class loader to load an application singleton.
These singletons can be threads or other objects that are loaded by the JRE using the
context class loader. If the web application code triggers the initialization of a singleton or
a static initializer, these conditions apply: One, the context class loader becomes the web
application class loader and two, a reference is created to the web application class
loader. This reference is never garbage collected. As a result the class loader is retained,
and all the classes loaded by it, in memory.

Application triggered leaks are categorized as custom ThreadLocal class, web application
class instance as threadLocal value, web application class instance indirectly held through
a ThreadLocal value, ThreadLocal pseudo-leak, ContextClassLoader and threads created
by web applications, ContextClassLoader and threads created by classes loaded by the
common class loader, Static class variables, and JDBC driver registration (RMI targets).
For more information on application triggered links, see the links on the slide.

WAS85_Classloader_Leak_Detection.ppt Page 5 of 16

http://www.websphereusergroup.org.uk/wug/files/presentations/31/Ian_Partridge_-_WUG_classloader_leaks.pdf
http://www.ibm.com/support/docview.wss?uid=swg1PM39870
http://wasdynacache.blogspot.com/2012/01/websphere-classloader-memory-leak.html

Detection, prevention and action

� Detection: Issue warnings when a memory leak is detected

� Prevention is on by default and applies only to JRE triggered leaks.

� Action: Take proactive action to fix memory leaks.
– Actions have reasonable defaults and are configured on a case-by-case

• Pseudo code for clearing leaks
protected void com.ibm.ws.classloader.clearReferences(){

if(ENABLE_CLEAR_REFERENCES_JDBC)

clearReferencesJdbc();

if(ENABLE_CLEAR_REFERENCES_THREADS)

clearReferencesThreads();

if(ENABLE_CLEAR_REFERENCES_THREADLOCALS)

clearReferencesThreadLocals();

if(ENABLE_CLEAR_REFERENCES_RMI_TARGETS)

clearReferencesRmiTargets();

if(ENABLE_CLEAR_REFERENCES_STATICS)

clearReferencesStaticFinal();

}

6 Classloader memory leak prevention, detection, and remediation © 2012 IBM Corporation

Through a combination of standard API calls and some reflection tricks, when a web
application is stopped, undeployed or reloaded a memory leak is detected.

Prevention is on by default and applies only to JRE triggered leaks. JRE triggered leaks
are prevented by initializing singletons at server startup when the application server class
loader is the context class loader. Proactive actions to fix memory leaks have reasonable
defaults and are configured on a case-by-case basis.

WAS85_Classloader_Leak_Detection.ppt Page 6 of 16

Memory leak policy configuration

Enabled by way of JVM custom properties on a per application server /JVM basis

Existing (V7 and up) PM39870: IMPROVED CLASSLOADER LEAK DETECTION.
– com.ibm.ws.runtime.detectAppCLLeaks=true

NEW in V8.5 (traditional WebSphere Application Server only, not in Liberty)
– enabled by setting these JVM custom properties:

com.ibm.ws.runtime.component.MemoryLeakConfig.detectAppCLLeaks
com.ibm.ws.runtime.component.MemoryLeakConfig.clearAppCLLeaks
com.ibm.ws.runtime.component.MemoryLeakConfig.preventJreMemoryLeaks
com.ibm.ws.runtime.component.MemoryLeakConfig.clearReferencesStatic
com.ibm.ws.runtime.component.MemoryLeakConfig.clearReferencesInterruptThreads
com.ibm.ws.runtime.component.MemoryLeakConfig.clearReferencesStopTimerThreads
com.ibm.ws.runtime.component.MemoryLeakConfig.clearReferencesThreadLocal

7 Classloader memory leak prevention, detection, and remediation © 2012 IBM Corporation

The MemoryLeak service and its mbean are active only in an application server that hosts
applications and services requests. This service is not active on a Deployment Manager,
node agent, administrative agent, or other server types like WebSphere proxy server.

The leak detection option is disabled by default. You can use Java virtual machine (JVM)
custom properties to adjust the leak policy values such as, enable and disable leak
detection, action, and prevention. These custom properties are only applicable to a stand­
alone server or managed application server and not to a node agent, administrative agent,
job manager, or deployment manager. When the application or the server is shutting
down, WebSphere Application Server determines the classloaders that have references to
associated loaded classes and objects. If a classloader leak is detected a heapdump or
systemdump is taken. All persistent configurations of this service are completed using
JVM custom properties. At runtime, use the MemoryLeakConfig and MemoryLeakAdmin
mbeans for configuration and administration. The configuration changes are not persisted
until JVM custom properties are configured.

WAS85_Classloader_Leak_Detection.ppt Page 7 of 16

Persisted leak policy configuration in server.xml

<jvmEntries xmi:id="JavaVirtualMachine_1183122130078"

verboseModeClass="true" verboseModeGarbageCollection="true"

verboseModeJNI="false"

runHProf="false" hprofArguments="" debugMode="false" debugArgs="­
agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=7777"

genericJvmArguments="-agentlib:getClasses -Xquickstart -Xalwaysclassgc"

executableJarFileName="" disableJIT="false">

<systemProperties xmi:id="Property_1317048628648"

name="com.ibm.ws.runtime.component.MemoryLeakConfig.detectAppCLLeaks"

value="true"/>

<systemProperties xmi:id="Property_1318975518491"

name="com.ibm.ws.runtime.component.MemoryLeakConfig.clearAppCLLeaks"

value="true"/>

<systemProperties xmi:id="Property_1318955284241"

name="com.ibm.ws.runtime.component.MemoryLeakConfig.generateSystemDumps

“ value="false"/>

<systemProperties xmi:id="Property_1319119976147"

name="com.ibm.ws.runtime.component.MemoryLeakConfig.generateHeapDumps“

value="true"/>

<systemProperties xmi:id="Property_1317048628649"

name="com.ibm.ws.runtime.component.MemoryLeakConfig.monitorSystemApps“

value="false"/>

</jvmEntries>

8 Classloader memory leak prevention, detection, and remediation © 2012 IBM Corporation

These JVM custom properties are persisted in the WebSphere Application Server
configuration model in the server.xml file. The example here is of a persisted leak policy
configuration in the server_home/config/cells/nodes/servers/server.xml file of an
unmanaged server:

WAS85_Classloader_Leak_Detection.ppt Page 8 of 16

Memory leak configuration mbean

All the attributes of the Type MemoryLeakConfig mbean

Attribute Type Access
JvmThreadGroupNames java.lang.String RW
FilterPrefixes java.lang.String RW
RenewThreadPoolNames java.lang.String RW
DetectAppCLLeaks boolean RW
ClearAppCLLeaks boolean RW
MonitorSystemApps boolean RW
NoDumps boolean RW
GenerateHeapDumps boolean RW
GenerateSystemDumps boolean RW
ClearReferencesStatic boolean RW
ClearReferencesInterruptThreads boolean RW
ClearReferencesStopTimerThreads boolean RW
ClearReferencesHttpClientKeepAliveThread boolean RW
ClearReferencesThreadLocal boolean RW
LeakSweeperDelay int RW
ThreadPoolRenewalDelayFactor int RW
PreventJreMemoryLeaks boolean RW
LeakConfiguration java.lang.String RO

9 Classloader memory leak prevention, detection, and remediation © 2012 IBM Corporation

At runtime the memory leak detection, prevention and policy configuration can be changed
using the MemoryLeakConfig mbean. Administration of the memory leak policy can be
carried out using the MemoryLeakAdmin mbean. The leak policy affects how the
application server responds to a classloader memory leak when an application or server is
stopped. You can adjust the memory leak policy settings by using the WSADMIN scripting
interface. These changes take effect immediately. However, they are not persisted to the
server configuration and are lost when the server is restarted.

WAS85_Classloader_Leak_Detection.ppt Page 9 of 16

Memory leak runtime mbean

Look at all the operations of the MemoryLeakAdmin mbean

WSADMIN>$Help all $leakAdmin

Name:

WebSphere:cell=smitaNode03Cell,name=LeakAdmin,type=MemoryLeakAdmin,node=smi

taNode03,process=server1

Description: Information on the management interface of the MBean

Class name: com.ibm.ws.runtime.component.MemoryLeakAdmin

Operation

java.lang.String findLeaks()

java.lang.String fixLeaks()

java.lang.String fixLeaks(java.lang.String)

10 Classloader memory leak prevention, detection, and remediation © 2012 IBM Corporation

The MemoryLeakAdmin Mbean is available to you that provides operations to find and fix
leaks at runtime. The MemoryLeakAdmin mbean also provides multiple operations to find
and fix leaks for applications that have been stopped.

WAS85_Classloader_Leak_Detection.ppt Page 10 of 16

Leak detection messages

� CWMML0015E: The web application [WasSwat#WasSwatWeb.war] created a
ThreadLocal with key of type [test.memleak.MyThreadLocal] (value
[test.memleak.MyThreadLocal@216c691]) and a value of type
[test.memleak.MyCounter] (value [test.memleak.MyCounter@21942ff])
but failed to remove it when the web application was stopped.

� CWMML0010E: The web application [LeakApp#leak.war] opens to have
started a thread named [Thread-73] but has failed to stop it.

� CWMML0011E: The web application [LeakApp#leak.war] appears to have
started a TimerThread named [leaked-thread] by way of the
java.util.Timer API but has failed to stop it.

� CWMML0024W: About to interrupt thread [leakingThread] which is
currently executing

� CWMML0026I: ClassLoader memory leak is fixed. Clearing leak

References succeeded for LeakApp#leak.war.

11 Classloader memory leak prevention, detection, and remediation	 © 2012 IBM Corporation

These are samples of the different memory leak warning messages that output when a
memory leak is detected. The messages describe the type of memory leak and its root
cause. These messages provide guidance on how to fix leaks in the source code.

WAS85_Classloader_Leak_Detection.ppt	 Page 11 of 16

© 2012 IBM Corporation12 Classloader memory leak prevention, detection, and remediation

SummarySummary

Section

To summarize,

WAS85_Classloader_Leak_Detection.ppt Page 12 of 16

Summary

� Improves resiliency and general robustness of the application server by providing protection
against memory leaks in three parts

– Detection protection
– Prevention protection
– Action protection

13 Classloader memory leak prevention, detection, and remediation	 © 2012 IBM Corporation

The classloader leak detection feature of WebSphere Application Server V8.5 provides
protection against memory leaks in three parts: detection, prevention, and action.
Detection issues warnings when a memory leak is detected. Prevention protects from JRE
triggered leaks by initializing singletons at server startup when the application server class
loader is the context class loader. Action takes proactive action to fix memory leaks by
way of reasonably configured defaults on a case-by-case basis.

WAS85_Classloader_Leak_Detection.ppt	 Page 13 of 16

References

� Memory leaks in Java Platform, Enterprise Edition applications

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.doc/ae/ctrb_memleakdetection.html

� Configuring the memory leak policy

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_configmemleak.html

14 Classloader memory leak prevention, detection, and remediation © 2012 IBM Corporation

See these references for additional information.

WAS85_Classloader_Leak_Detection.ppt Page 14 of 16

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WAS85_Classloader_Leak_Detection.ppt

This module is also available in PDF format at: ../WAS85_Classloader_Leak_Detection.pdf

15 Classloader memory leak prevention, detection, and remediation © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WAS85_Classloader_Leak_Detection.ppt Page 15 of 16

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

16 © 2012 IBM Corporation

WAS85_Classloader_Leak_Detection.ppt Page 16 of 16

