
WAS85_LP_Class_Loading.ppt Page 1 of 22

© 2012 IBM Corporation

IBM WebSphere Application Server V8.5
Liberty profile

Class loading service

This presentation describes the class loading service in IBM WebSphere Application
Server 8.5 Liberty Profile

WAS85_LP_Class_Loading.ppt Page 2 of 22

© 2012 IBM Corporation2 Class loading service

OverviewOverview

Section

The class loading service is responsible for loading Java classes from Java EE
applications and from Java libraries external to those applications.

WAS85_LP_Class_Loading.ppt Page 3 of 22

© 2012 IBM Corporation3 Class loading service

What is the class loading service?

Class
Loading
Service

load

load

Class
loading
service

find

OSGi is a modular Java platform that provides class loading for OSGi bundles and clean,
declarative dependency management.

In OSGi, bundles declare what packages they will need, and the framework wires the
packages together from different bundles to satisfy the dependencies.

Ordinary Java libraries do not have this sort of declaration and are not handled by the
OSGi framework.

The Class Loading Service fills in the gaps: it loads Java EE application classes and Java
libraries (libraries that are not OSGi bundles).

Since these classes can depend on classes from the Liberty profile’s OSGi bundles, the
Class Loading Service also provides a link into the OSGi framework.

It finds OSGi classes and OSGi resources in common locations. It also puts OSGi classes
on the thread context class loader, which is used by several non-OSGi-aware Java
mechanisms.

WAS85_LP_Class_Loading.ppt Page 4 of 22

© 2012 IBM Corporation4 Class loading service

Usage scenariosUsage scenarios

Section

Let’s look at some of the ways the class loader service can work with applications.

WAS85_LP_Class_Loading.ppt Page 5 of 22

© 2012 IBM Corporation5 Class loading service

Loading a WAR

gateway
class
loader

app
class
loader

In version 8.5, the only Java EE applications supported by the Liberty profile are web
applications. The simplest packaging for these is the stand-alone WAR.

For each WAR an empty bundle is created in the framework. This lets the application ‘see’
the classes in the OSGi framework. This gateway bundle uses a feature called dynamic
package import. The server does not know what packages are going to be used by the
application, and the dynamic import allows these to be provided on demand — that is,
when the application class loader requests those classes.

This one-bundle-per-application approach allows the OSGi framework to separate the
classes used by each application so there is no class space conflict between applications.
Each application gets its own set of wirings to the OSGi bundles, and the framework takes
responsibility for ensuring consistency even when multiple versions of a package are
available.

The gateway class loader is a class loading service artifact. It looks for classes in the
gateway bundle, and then checks the Java runtime for classes. The reason for this
ordering is that the OSGi framework hides some of the Java runtime packages and
overrides others. The overriding packages should take precedence, so the OSGi
framework is queried first. Since customer applications can require access to JRE-specific
packages, these are searched next. The package-overriding behavior of the OSGi
framework is preserved, but the package-hiding behavior is circumvented.

The application class loader checks with the gateway class loader first, then looks in the
web application for classes, and it is this application class loader that loads application
classes at runtime.

Next, let’s take a look at how the class loaders are structured for an EAR-based web
application.

WAS85_LP_Class_Loading.ppt Page 6 of 22

© 2012 IBM Corporation6 Class loading service

Loading an EAR (1 of 2)

gateway
class
loader

module
class
loader

app
class
loader

As before, there is a unique gateway bundle, a unique gateway class loader, and a unique
application class loader for the EAR. There are additional class loaders for each module
within the EAR. The runtime class of these module class loaders is the same as the
application class loader since the functionality required is almost identical. The module
class loaders are unaware of each other. They only see their parent class loader — the
application class loader for the EAR.

WAS85_LP_Class_Loading.ppt Page 7 of 22

© 2012 IBM Corporation7 Class loading service

Loading an EAR (2 of 2)

gateway
class
loader

module
class
loader

app
class
loader

Classes
loaded here
are shared
across all
modules

Classes
loaded here
are unique to

a module

This means that packages defined at the EAR level are shared across WAR modules, and
objects of those types can be interchanged freely between the modules. Static information
in those classes — a counter, for example — is common across all modules.

Classes defined within the WARs are not shared. Two WARs can both contain the same
class, and that is fine, but even if they have identical bytecode, the objects are not
interchangeable between WARs. Also, Java statics are not shared across these classes.

But what happens when you need to reference an external library?

WAS85_LP_Class_Loading.ppt Page 8 of 22

© 2012 IBM Corporation8 Class loading service

Defining an external library

Contents of a
library can be

one or more jar
files or native

libraries or both

Use the ID of
a library to
reference it

Everything you have seen so far can be achieved by placing an application in the dropins
folder, or by configuring an application in server.xml. Defining an external library requires
you to edit the server.xml.

This is an example of the configuration for defining a shared library. This element is a top-
level element in the server.xml.

A library is referenced by its ID, and contains only files. There is no support for adding a
directory to a library.

Files can be JAR files or native libraries, although the semantics of native library support
in Java mean that adding a native library here only adds it to the search path when
libraries are loaded. Native libraries are not loaded by a class loader directly.

Note that this library definition is for use by Java EE applications. There is a separate
facility known as the bundle repository for configuring additional bundles to be used by
OSGi applications.

WAS85_LP_Class_Loading.ppt Page 9 of 22

© 2012 IBM Corporation9 Class loading service

Using an external library from a WAR

gateway
class
loader

app
class
loader

Once the library is defined, it can be used from a configured application by configuring the
class loader for that application as demonstrated at the bottom of this slide.

The <application> element can exist without the <classloader> child, but as far as the
class loading service is concerned, that is identical to a dropped-in application.

Here the application has had the Junit library added to its class path. The application class
loader will check the library for classes and resources.

The class loader configuration is only valid for Java EE applications. If it is provided for an
OSGi application, it is ignored.

The picture for an EAR looks very similar…

WAS85_LP_Class_Loading.ppt Page 10 of 22

© 2012 IBM Corporation10 Class loading service

Using an external library from an EAR

gateway
class
loader

app
class
loader

module
class
loader

The module class loaders do not see the library directly — they merely have access to it
through the application class loader. The Liberty profile does not allow configuration of
class loaders at the module level.

On this slide, as on the previous one, the library is loaded by the application class loader
directly. Although there can be two apps loading the same library classes from the same
files in the file system, they will each see separate copies of these classes. Objects of
these classes are not exchangeable between the apps and any static fields seen by one
application are completely separate from the static fields seen by the other application.

There is a way that two apps can share the same loaded library classes, reducing the
memory footprint and increasing interoperability…

WAS85_LP_Class_Loading.ppt Page 11 of 22

© 2012 IBM Corporation11 Class loading service

Sharing an external library across applications

aagateway
class
loader

app
class
loader

library
class
loader

library loader is
shared by JDBC,

Security, and
apps using

common library
references

Take a look at the configuration change shown at the bottom of the screen, highlighted in
yellow. The reference attribute has changed from privateLibraryRef to commonLibraryRef.
This ensures that the application class loader defers to a common library loader to load an
external library.

You have already seen that the module class loaders of an EAR are not directly affected
by the use of private library references. The same holds true for common library
references. The modules and their loaders are not shown here, and the EAR can just as
easily be a WAR.

This configuration allows applications to access library classes directly and ensure that
they are using the same classes as other applications.

There is no special implementation for a library class loader: it uses the same class as the
application class loader.

There is at most one library class loader available for a library at a time (it should be
replaced when a library is updated). This library loader also gets used for JDBC drivers
and for custom login modules. This means that applications can also use this approach to
access the same classes that the JDBC and Security components can be using.

WAS85_LP_Class_Loading.ppt Page 12 of 22

© 2012 IBM Corporation12 Class loading service

Using the global shared library folder

gateway
class
loader

app
class
loader

multiple apps share the
same library loader as

their parent class loader

global
library
loader

All the jars in the global
shared library folders:

•wlp/usr/shared/lib/global
•wlp/usr/servers/MySvr/lib/global

this library is
also available to
configured class
loaders as the
library with ID

‘global’

There is a facility for applications to use a pre-defined folder and load shared libraries from
there. To use this, libraries must be placed in the server-specific global library folder, or
the global library folder shared across all servers. Application class loaders access the
shared library through their parent class loader chain rather than by delegation.

This facility is mandated by the servlet specification, but it breaks the nice single-gateway-
bundle-per-application pattern established in the Liberty profile. For this reason, the facility
is not used unless two very specific conditions are met:

If either of these conditions is not met for any given application, that application will revert
to the pattern shown on previous slides. First, at least one of the global shared library
folders must exist and must not be empty. Second, the application configuration (if there is
one) must not specify a <classloader> element. If either of these conditions are not met for
any given application, that application will revert to the pattern shown on previous slides.

It is still possible for an application with a configured class loader to reference this library
as a private or a common library by using the special library ID ‘global’. However, for that
application, the configured class loader will use either the external library or shared
external library model rather than this one.

This model of library use is supported purely for compliance with the servlet specification
(Servlet 3.0 section 10.7.2) . It is not recommended because it breaks the class space
isolation that the Liberty profile can provide.

WAS85_LP_Class_Loading.ppt Page 13 of 22

© 2012 IBM Corporation13 Class loading service

Controlling the API packages an application can see

This application can see
packages from just one

API type

This application can
see packages from
several API types

This setting for a
library must match
the setting for any
class loaders that
use the library by
way of a common
library reference

The APIs provided with the Liberty Profile are divided into four distinct types: ‘spec’, ‘ibm-
api’, ‘ibm-spi’, and ‘third-party’.

By default, an application can only access two of these: ‘spec’ and ‘ibm-api’

To change which types an application can see, you can specify an attribute called
‘apiTypeVisibility’ on the class loader, with a comma-separated list of the types required.

If an application uses any libraries through a common library reference, it is sharing the
common class loader for that library. In order to preserve class space consistency for all
common users of that library, the same attribute with the same value must be specified on
the library definition.

Remember that this is only for Java EE apps. OSGi allows much finer-grained control at
the package level, so this coarse level of control is unnecessary.

WAS85_LP_Class_Loading.ppt Page 14 of 22

© 2012 IBM Corporation14 Class loading service

Overriding the API classes

…with classes in an application

…with classes in a private library

…with classes in a common library

If an application needs to override a provided API, either with classes in the application
itself or in an external library, this can be achieved by using the delegation setting. This
defaults to ‘parentFirst’ but can be set to ‘parentLast’. This causes the application class
loader to look in the application classes and the library classes before consulting the
logical parent class loader — the gateway bundle.

Consider the Apache Wink APIs. These are provided as vendor APIs with the Liberty
profile, but an application can provide and use its own version of Wink. In this case, the
‘parentLast’ delegation setting can be used to ensure that the application uses an
alternative version of the classes in preference to those available in the Liberty profile.

This setting can be used to prefer classes from an application, a private library, or a
common library over those provided by the Liberty profile.

Since OSGi allows applications to specify the versions of packages to be imported, once
again this coarser level of control is only needed for Java EE applications.

WAS85_LP_Class_Loading.ppt Page 15 of 22

© 2012 IBM Corporation15 Class loading service

TroubleshootingTroubleshooting

Section

In these slides, you will find out about the diagnostic tools available for understanding the
behavior of the Class Loading Service.

WAS85_LP_Class_Loading.ppt Page 16 of 22

© 2012 IBM Corporation16 Class loading service

Class Loading Service Logging and Trace

Enabling traceserver.xml

bootstrap.properties

Messages

All the messages from the Class Loading Service begin with a key of CWWKL, followed by
four numbers and another letter. These are visible in the terse console.log and the more
verbose, time-stamped messages.log. The example here indicates a problem retrieving a
library.

To enable trace for the Class Loading Service, you can add or amend the logging
configuration element in the server.xml. The value of the traceSpecification is a colon-
delimited list. The first entry in this example is the default trace — this must be made
explicit if still required when a traceSpecification is provided. The second entry, highlighted
in yellow, is the part that turns on the class loading trace. “ALL” is a very verbose setting,
and it can suffice to set it to “FINE”. There is an option to turn on the trace in the
bootstrap.properties as well, but remember that this is only read at start up. The
server.xml approach allows trace settings to be modified in a running server instance.

WAS85_LP_Class_Loading.ppt Page 17 of 22

© 2012 IBM Corporation17 Class loading service

Other class loading debug

Enable JVM class loading tracejvm.options

Enable OSGi class loading tracebootstrap.properties

c:\path\to\file

It is often helpful to enable JVM class loading trace, which tells you the class loader for
every class loaded in the entire system. This can be done in the jvm.options file. Note that
you can also get similar information from a javacore from an IBM virtual machine, or an
hprof file from a Sun JVM.

Sometimes you will want to understand what the OSGi framework is doing. This requires
two files to be edited. The location of the OSGi debug properties file is supplied by way of
the bootstrap.properties file. The contents of the OSGi debug properties file determine the
tracing, and the highlighted yellow text shows how to enable OSGi class loading trace.

WAS85_LP_Class_Loading.ppt Page 18 of 22

© 2012 IBM Corporation18 Class loading service

SummarySummary

Section

To recap…

WAS85_LP_Class_Loading.ppt Page 19 of 22

© 2012 IBM Corporation19 Class loading service

Summary

� The class loading service is used for Java EE applications and Java libraries.

� Applications in the dropins folder have fixed class loading behavior.

� Configured applications can have a configured class loader, allowing these options:
– Use of external libraries using privateLibraryRef
– Sharing of external libraries using commonLibraryRef
– Control over which API types can be accessed using apiTypeVisibility
– Overriding of APIs using delegation=“parentLast”

� Debugging of class loading happens at several levels:
– The Liberty profile class loading service for Java EE application and library classes
– The JVM — to see all classes by class loader
– The OSGi framework — to see OSGi bundle class loading

The Class Loading Service is used for non-OSGi applications and libraries.

Dropped-in apps cannot be configured and use the default class loading behavior.

Configured applications can have configured class loaders, allowing the use of shared
libraries and tighter control over APIs.

Debugging is possible at three levels: the Class Loading Service, the JVM, and the OSGi
framework.

WAS85_LP_Class_Loading.ppt Page 20 of 22

© 2012 IBM Corporation20 Class loading service

References

� Information center for class loading in WebSphere Application Server 8.5 Liberty profile
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.wlp.nd.multiplatform.doc/topics/twlp_classloader.html

� Neil Bartlett on OSGi and Java class loading
http://njbartlett.name/2010/08/30/osgi-readiness-loading-classes.html

� Servlet 3.0 specification (see 10.7.2 for details of the global shared library requirement)
http://jcp.org/aboutJava/communityprocess/final/jsr315/index.html

See these references for additional background information about the class loading
service

WAS85_LP_Class_Loading.ppt Page 21 of 22

© 2012 IBM Corporation21 Class loading service

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WAS85_LP_Class_Loading.ppt

This module is also available in PDF format at: ../WAS85_LP_Class_Loading.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WAS85_LP_Class_Loading.ppt Page 22 of 22

© 2012 IBM Corporation22

Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

