
WASV85_OSGi_part2.ppt Page 1 of 33

© 2012 IBM Corporation

WebSphere Application Server V8.5

Modular and dynamic OSGi applications
Part 2: OSGi application support in WebSphere
Application Server

This presentation covers modular and dynamic OSGi applications in WebSphere
Application Server. This is Part two - OSGi applications support in WebSphere Application
Server.

WASV85_OSGi_part2.ppt Page 2 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Table of contents

� Part 1
– Why does complexity tend to increase?
– Introduction to OSGi

� Part 2
– OSGi application support in WebSphere
– Using OSGi to develop and manage enterprise applications

• Modular
• Dynamic
• Extensible

This is the second part of a two part session that looks at the WebSphere Application
Server OSGi Applications feature, introduced in version seven and extended in version 8.

Part one described some common problems experienced with application deployments
using Java Enterprise Edition (or Java EE for short), and how OSGi and Java Enterprise
Edition have come together over the last two years in standards and in open source.

This part looks at the concept of an OSGi application and how this is supported in
WebSphere Application Server to produce modular, dynamic, and extensible applications
based on OSGi and Java Enterprise Edition technology.

WASV85_OSGi_part2.ppt Page 3 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

OSGi applications in WebSphere Application Server

� First surfaced to applications in a WebSphere Application Server V7 Feature Pack
– http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/

– Modular development, deployment and management

– Blueprint (Standardized Spring Component Model)

– Web applications (Java EE 5)

– Remote Services and Heterogeneous Assembly (SCA)

� Included in the WebSphere Application Server Base in V8 and added:
– Java EE 6 web technologies

– Post-deployment configuration

– Performance metrics

– In-place Update

– Application extension

� Added in WebSphere Application Server V8.5
– Modular Enterprise JavaBeans

– Blueprint Role-based Security

– OSGi Applications Web Console

The WebSphere Application Server V7 Feature Pack for OSGi Applications and JPA 2.0
integrates the Apache Aries project with the WebSphere Application Server to provide
support for OSGi based enterprise applications.

It introduced the Blueprint standardization of the Spring XML bean definition format, the
ability to form web applications from OSGi bundles, and the ability to integrate with the
Service Component Architecture for assembling JEE applications and OSGi applications
together, and enabling OSGi remote services. It also includes basic support for application
update and extension. The feature pack extends the Application Server to provide an end-
to-end development, deployment, and administrative integration for OSGi Applications.

In WebSphere Application Server V8 the OSGi applications capability is included in the
base product. It is enhanced to provide support for updating and extending applications
while they continue to run. Configuration can be changed after application deployment.
Performance metrics were added for OSGi applications, and there is support for using
JEE 6 web technologies within OSGi applications.

In WebSphere Application Server V8.5 OSGi applications can take advantage of the
Enterprise JavaBeans programming model. Blueprint has been extended to add the ability
to specify for role-based security. As a debugging tool, through the administrative console,
it now possible to view and navigate the details of running OSGi applications.

WASV85_OSGi_part2.ppt Page 4 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Blueprint components and service

� Dependency Injection container
– Standardizing established Spring conventions

� Configuration and dependencies declared in Blueprint XML
– Standardization of Spring “application context” XML
– Extended for OSGi: publish/consume components as OSGi services

� Simplifies unit test outside either Java EE or OSGi runtime
� Integrated into server runtime to simplify deployme nt & support

Blueprint managed bundle

dependencies injected

publishes
service

consumes
service

A static assembly and
configuration of beans

(POJOs)

Blueprint container scoped by a
bundle (one per bundle).
Multiple <blueprints /> per
container.

By standardizing the Spring XML configuration format in the OSGi Alliance and delivering
the container as an OSGi bundle, it has become possible to pull the dependency injection
container out of the application and into the middleware. The standards-based evolution of
the dependency injection container is called the Blueprint container.

The Blueprint XML configuration file has the same structure as the Spring XML
configuration file but in an OSGi namespace. The Blueprint XML is a bean definition file for
all the beans provided by a single bundle. In addition to the bean definitions that is familiar
to Spring developers, the Blueprint model adds new service and reference elements as
part of the integration with the OSGi environment. Service elements direct the Blueprint
container to expose a service interface for a component outside the bundle and a
reference element directs the Blueprint container to locate a service that can be consumed
from outside the bundle. The yellow arrows in the figure indicate OSGi services that are
published to and consumed from the OSGi Service Registry by the blueprint container.
The OSGi service registry is a standard part of OSGi and provides a mechanism akin to
JNDI for the publication of OSGi services. The use of Blueprint abstracts application
developers provides a simpler, declarative use of the OSGi services.

Ultimately, the Blueprint container manages the lifecycle and dependencies of the POJO
beans that contain the application logic and the services and references each bundle
provides, and ensures references are wired to available services.

WASV85_OSGi_part2.ppt Page 5 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Blueprint extensions

� Namespaces extend core component model
– Transactions
– Resource References
– JPA integration
– Security (new in V8.5)

brightness

The Blueprint specification provides an extension mechanism. This is used to provide
declarative mechanisms for specifying additional properties to managed beans. The
transaction extension enables methods to be included within a transaction and a way of
specifying the scope of that transaction. The Java Persistence API extension provides a
short-hand form of injecting an entity manager into a managed bean. The security
extension provides a mechanism for securing access at the method level to a specific role
which you can map to a role defined in the application server at the time you install the
application.

WASV85_OSGi_part2.ppt Page 6 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

EJB bundle (New in 8.5)

� EJB Bundle = EJB JAR + OSGi Metadata

� Export-EJB: Opt-in header for EJB Bundles
– Existence: process bundle for EJBs
– Absence: do not process bundle for EJBs, even if it contains them

� Header value governs registration of EJBs as OSGi services
– Excludes message-driven and stateful beans
– Best practice: only export EJBs to be shared outside bundle

� EJBs run in the same WebSphere Application Server EJB container

� EJB 3 style supported (EJB 2 style not supported)

� Uses OSGi for classloading and lifecycle

Example Meaning

Export-EJB: Process all EJBs and register them as OSGi services

Export-EJB: BlogBiz,
BlogPersistence

Process all EJBs, register BlogBiz and BlogPersistence as
services if they exist

Export-EJB: NONE Process all EJBs but don’t register them as OSGi services

From WebSphere Application Server V8.5 Enterprise JavaBeans can be deployed in
OSGi bundles. Just as a Bundle is a JAR with extra OSGi metadata, an “EJB Bundle” is
an EJB JAR with extra OSGi metadata.

A bundle that contains Enterprise JavaBeans is not processed as an EJB Bundle by
default. An opt-in header indicates that Enterprise JavaBeans are present in the bundle
and should be processed. If the value of the header is empty, all the EJBs in the bundle
are processed and additionally registered as OSGi services in the OSGi service registry.
Alternatively a list of comma separated EJB names can be specified that should be
processed and registered as OSGi services. The special value ‘NONE’ means EJBs are
processed, but not registered as OSGi services.

WASV85_OSGi_part2.ppt Page 7 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Example EJB bundle

� Local and remote EJBs supported
– EJB 3 style

� Best practices:
– Put interfaces and EJB implementations in

separate bundles and separate packages
– Annotate @Local or @Remote on the EJB

implementation classes*

� Blue explicitly named in Export-EJB header:
– Blue processed as an EJB and registered

as a service
– Other EJBs ignored

� Imports the packages it needs:
– Colors API
– EJB API

*annotations not processed outside the EJB bundle

As an example, a class annotated as a LocalBean EJB, called “Blue,” implements a
business interface called “ColorService.”

The OSGi best practice of separating interfaces from their implementations into separate
bundles allows those implementations to be dynamically replaced at runtime within
affecting the availability of the consumers of those interfaces. This best practice should be
applied to the use of Enterprise JavaBeans in OSGi: business interfaces should be
separated from their EJB implementations, into separate bundles.

In this example, the Export-EJB specifies “Blue” to be processed and registered in the
OSGi service registry against the ColorService interface.

WASV85_OSGi_part2.ppt Page 8 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Application-level metadata and archive

� An isolated, cohesive application consisting
of a collection of bundles, is deployed as a
logical unit in a “.eba” archive

– An “OSGi Application”.

� Constituent bundles are listed in the
APPLICATION.MF and can be contained
(“by-value”) in the archive

– if referred to, then they are provisioned
from a bundle repository at deployment
time

� Services provided by the bundles in the
application are isolated to the application
unless explicitly exposed through EBA-
level application manifest

� Configuration by exception – optional
application-level metadata in
APPLICATION.MF

Application

EntitiesEntities

<persistence.xml/>

APPLICATION.MF

BlueprintBlueprint

Web componentsWeb components

<web.xml />

<blueprint.xml/>

Bundle RepositoryBundle Repository

logging.jar

OSGi applications are deployed to WebSphere Application Server through wsadmin or
with the administrative console just like any other application but are packaged in a new
type of archive called an “enterprise bundle archive” or “EBA” archive. This is similar to a
JEE Enterprise Application Archive (or ‘EAR’) except that its modules are deployed as
bundles to the required target servers. An EBA archive represents a single isolated OSGi
application consisting of one of more bundles and is the unit of deployment for an
enterprise OSGi application. Like an EAR file, an EBA archive can contain all the
constituent modules that make up the application but it may just contain the metadata
required to locate those bundles from a configured bundle repository.

The metadata is in the form of an EBA-level “APPLICATION MANIFEST” file that
describes the content of the application and whether the application exposes any external
services and references. Just like a bundle manifest describes the modularity
characteristics of a bundle, the application manifest describes the modularity
characteristics of the application and the deployable content of the application.

The example here shows an OSGi Application consisting of a web application bundle (or
WAB) providing the UI content, a blueprint bundle providing the business logic and a
persistence bundle encapsulating entities that are persisted through the Java Persistence
API to a relational database. The WAB depends on a common ‘logging’ library that is not
packaged as part of the archive but provisioned from a common bundle repository.

Configuration is by exception – the absence of an APPLICATION MANIFEST indicates
that all application content is contained within the archive and the application exposes no
services or references externally.

WASV85_OSGi_part2.ppt Page 9 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Example “Blog” application architecture

Manifest-Version: 1.0

Application-ManifestVersion: 1.0

Application-Name: Aries Blog

Application-SymbolicName: com.ibm.samples.osgi.blog.app

Application-Version: 1.0

Application-Content:

com.ibm.samples.websphere.osgi.blog.api;version=1.0.0,

com.ibm.samples.websphere.osgi.blog.persistence;version=1.0.0,

com.ibm.samples.websphere.osgi.blog.web;version=1.0.0,

com.ibm.samples.websphere.osgi.blog;version=1.0.0

blog.eba

Blogging
Service

Blog
Persistence

Service

META-INF/
persistence.xmlOSGI-INF/blueprint/

blueprint.xml

OSGI-INF/blueprint/
blueprint.xml

JNDI EM

blog

blog.persistence

blog.web

Web application bundle

WEB-INF/

web.xml

blog-api

Application-Content header
defines isolated application
content

The APPLICATION MANIFEST here shows how isolated content is defined by the
Application-Content header.

The figure describes one of the sample applications shipped with the OSGi Application
feature pack. It is a web application that provides a Blog. It consists of: A web bundle to
provide the user interface through standard servlets and Dojo. A blueprint bundle
containing three beans that encapsulate the business logic. The entry point is a Blogging
Service that is accessed through JNDI by the web application. A persistence bundle
containing a standard persistence.xml and entities representing the persistent data. And a
database where blog entries and author information are read from and written to through
JPA.

WASV85_OSGi_part2.ppt Page 10 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

No Java code changes; war modules -> bundles

Common, bundles can be easily factored out of the WARs and used at specific versions

Enhanced modular deployment process (1 of 2)

Bundle repository

Import-Package

webA. jar

WEB-INF/classes/servletA.class

WEB-INF/web.xml

META-INF/MANIFEST.MFwebA.war

WEB-INF/classes/servletA.class

WEB-INF/web.xml

WEB-INF/lib/…

logging f/w jar

persistence f/w jar

MVC f/w jar

DI f/w jar

Getting started with OSGi application support in WebSphere Application Server is made
very simple with no need to make any changes to a web application implementation.

Web Application Archives, also known as W.A.R modules, can be deployed to WebSphere
Application Server as web application bundles with no change to their runtime behavior.
When you have multiple applications that use common libraries they are often placed
within each WAR file that uses them. With a small amount of refactoring, you can place
versioned, common libraries in an OSGi bundle repository so that each application using
these libraries delivers only their unique modules and are wired to the common libraries at
deployment time.

WASV85_OSGi_part2.ppt Page 11 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

No Java code changes; war modules -> bundles

Common, bundles can be easily factored out of the WARs and used at specific versions

Enhanced modular deployment process (2 of 2)

• Manage multiple
versions of libraries
across an enterprise

• Isolate application
dependencies from the
server runtime

• Centralized location to
deliver critical fixes

• Flexibility to update to
new versions one
application at a time

Bundle repository

Import-Package

webA. jar

WEB-INF/classes/servletA.class

WEB-INF/web.xml

META-INF/MANIFEST.MFwebA.war

WEB-INF/classes/servletA.class

WEB-INF/web.xml

WEB-INF/lib/…

logging f/w jar

persistence f/w jar

MVC f/w jar

DI f/w jar

logging f/w jar

persistence f/w jar

MVC f/w jar

DI f/w jar

Remember- a bundle is just a JAR with additional OSGi metadata and a class loader that
respects that metadata. Throughout this presentation the bundle symbol is used to
indicate a JAR that is actually a bundle.

In this illustration four web application archives, which each include several common
libraries, are refactored as four web application bundles containing only the unique
content. The common libraries are installed once into an OSGi bundle repository.

The use of a bundle repository enables you to manage multiple versions of libraries across
your enterprise, providing a central location to deliver critical fixes and the flexibility to
update bundles used by the applications, one application at a time.

WASV85_OSGi_part2.ppt Page 12 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Bundle repository for modular deployment

WebSphere Application Server provides administrative support for using OSGi bundle
repositories to simplify the deployment of applications that use common libraries.
WebSphere Application Server can be configured either with the locations of external
bundle repositories or can use an internal bundle repository provided in the product.
External bundle repositories provide their own tools for populating them and maintaining
their content; the WebSphere Application Server internal OSGi bundle repository is
managed through WebSphere administration with the administrative console or wsadmin
scripting.

Common bundles can be installed once into the configured OSGi Bundle repository and
used by many applications, reducing both disk usage and memory footprint.

WASV85_OSGi_part2.ppt Page 13 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Isolated and shared bundles (1 of 2)

� In Java EE, modules are isolated within an application and applications are isolated from
one another.

– Makes sharing modules difficult

� In OSGi all bundles have shared visibility to the externals of all others bundles within an
OSGi framework (JVM)

– Makes isolating applications difficult

Everything sharedEverything isolated

Java EE Application Server

EAR 1

Module A

Module B

Module C

EAR 2

Module A

Module G

Module C

OSGi V4.2 Framework

Isolation

Sharing

Application Isolation is an important consideration. At one extreme, Java EE provides no
portable notion of module sharing between enterprise applications – everything is isolated
and sharing libraries is difficult.

At the other extreme, OSGi bundles have shared visibility to the externals of all other
bundles within an OSGi framework, which typically means within a JVM. This makes
isolating applications difficult.

Something in between is needed.

WASV85_OSGi_part2.ppt Page 14 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

� The Equinox OSGi framework used by WebSphere Application Server enables “composite bundles” to
run in isolated child frameworks

– WebSphere installs each OSGi application into an isolated child framework
– Shared bundles are installed into the (single) parent framework

Isolated and shared bundles (2 of 2)

OSGi Applications in
WebSphere Application Server

EBA 1

Bundle A

Bundle B

Bundle C

EBA 2

Bundle A

Bundle G

Isolated
framework

Isolated
framework

Shared framework
Everything shared

OSGi V4.2 Framework

Everything isolated

Java EE Application Server

EAR 1

Module A

Module B

Module C

EAR 2

Module A

Module G

Module C

WebSphere Application Server achieves a mixture of isolation and sharing within
applications by effectively providing each OSGi application with its own OSGi framework.
Bundles that are not to be shared across applications run in an application’s “isolated
framework.” Bundles that are to be shared run in a single “shared framework” whose
contents are visible to all running applications.

WASV85_OSGi_part2.ppt Page 15 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Repeatable, consistent behavior

� The “Deployment manifest” is the concrete resolution of an application. It ensures the

application behaves in a consistent, repeatable fashion

Bundle Repository

Resolved against
configured repository

Deployed result

Application Manifest

Lists primary content at
range of versions

Declares Application
“externals”

blog.eba

blog.persistence.jar

blog.jar

blog.web.jar

Install (administrative console or wsadmin):

other.eba

logging.jar

Bundle cache

Installed
EBAs

Deployment Manifest

“Fixed” Deployed Result:

- Fully-resolved
- Locked-down versions

blog.eba

other.eba

blog.jar

logging.jar

The optional application manifest is authored by the assembler (for example using
Rational Application Developer). It must list the bundles required to be isolated at runtime
in the Application-Content header. Each entry in the header includes a “version range,”
which indicates which versions of the bundle are acceptable for use within the application.
The dependencies, which will ultimately run in the Shared Framework, are calculated at
deployment time using a process called ‘resolution’. This calculation is made using the set
of packages imported by the isolated bundles and the services required by Blueprint
managed beans. Second order dependencies are also pulled in as are their dependencies
and so on. Any missing package dependencies are reported as errors and are reported at
deployment time, so if the application deploys successfully then its package dependencies
will always be present at runtime.

The result of the resolution process is the full list of bundles, each at a specific version
number, to be used by the deployed application. This is stored in the deployment manifest.
Unlike the authored application manifest, the generated deployment manifest contains the
transitively closed content – the result of the deploy-time resolution. The deployment
manifest can be exported from one deployment and used in a subsequent deployment of
the same application, to ensure the application is deployed in the same way. This is useful
when moving an application from a Test to a Production system where you need to ensure
the application deploys in the same way.

Once an OSGi application has been successfully deployed then all its constituent bundles
are pushed out to the appropriate target servers and the application can be
administratively started. Starting the application causes its constituent bundles to be
started.

WASV85_OSGi_part2.ppt Page 16 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Application-centric bundle management (1 of 2)

� EBA archives are installed as application assets in WebSphere Application Server

systems management

EBA Archives are installed as application assets in WebSphere Application Server
systems management. Once installed, the application can be updated using the “update
bundle versions in the application” link.

WASV85_OSGi_part2.ppt Page 17 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Application-centric bundle management (2 of 2)

� Updates are pre-validated for resolution consistency before
being committed

� Only the modified bundles are installed

� In V7, the update takes effect after the application is restarted

After clicking on the “update bundle versions in this application” link the application content
bundles are listed. A drop-down list of new versions is available for each bundle. Initially
there are no new versions.

In this example, all the bundles are deployed at version 1.0.0. The drop-down list indicates
version 1.0.1 of the first bundle is available in a bundle repository. If the administrator
looks at the available bundles now he sees the blog bundle available at versions 1.0.0 and
1.0.1. If the administrator wants to move to version 1.0.1, he can preview the changes to
make sure the new version can still enable the application to be fully resolved, that is,
there are no new dependencies that cannot be found. If successful, this procedure creates
a new deployment manifest.

The administrator can then go ahead and commit the change. In V7 the update takes
effect after the application is restarted. In V8 the change takes effect through an additional
step described later.

WASV85_OSGi_part2.ppt Page 18 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Post deployment configuration - from V8.0

Post-deployment
configuration

When using the V7 feature pack, once an OSGi application has been installed as a
compositional unit (which includes configuring the application), reconfiguring the
application can only be done by removing and re-adding the composition unit.

In version 8 and 8.5 all options that can be configured during installation can also be
changed without having to remove and re-add the composition unit. This is done from the
composition unit detail panel. Note that post deployment configuration is also available for
V7 feature pack nodes when administered by a V8 or V8.5 deployment manager.

In addition, session management and run-as role mappings for OSGi web bundles can be
configured in the same place.

WASV85_OSGi_part2.ppt Page 19 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

In-place update – from V8.0 (1 of 2)

In-place update

Although the V7 feature pack has the capability to upgrade individual bundles within an
application, the capability has undergone a major overhaul to support both in-place update
and updates that require new configuration. The additional button at the end of the
composition unit detail panel is labeled “Update to latest deployment” and is enabled when
a new deployment has been created, but not yet enabled. It is used to initiate an in-place
update to an OSGi application - an update to a running application that replaces a subset
of the running bundles within it.

Note however that major changes that include package and service imports and exports
might well trigger an implicit restart of the entire application. Configuration wizard is
displayed at this point if the new replacement bundles require additional configuration
information such as virtual hosts or security bindings.

Updating an OSGi application in V8 and V8.5 occurs using a two-step process:

First, change bundle versions at the asset level, exactly as previously described in the V7
feature pack. This creates a new deployment manifest.

Second, instead of restarting the application, the administrator updates the application to
use the new deployment manifest by clicking the ‘Update to latest deployment’ button. At
this stage a wizard will pop up to allow any new required configuration to be set before the
update. Existing configuration will be migrated to the new bundle versions so only new
configuration needs to be configured. After this step, saving the configuration changes will
trigger the update. The bundles that need to be updated within the running application will
be stopped and the new ones started in their place.

WASV85_OSGi_part2.ppt Page 20 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

In-place update – from V8.0 (2 of 2)

Deployment manifest

“Fixed” Deployed Result:

- Fully-resolved
- Locked-down versions

some.eba
Deployment manifest

New “Fixed” Deployed Result:

- Fully-resolved
- Locked-down versions

some.eba

Provide any new configuration

� Service dynamicity is exploited most easily using the
Blueprint component model.

– Container blocks requests while service is replaced

Note: If a web application bundle is restarted, web client
traffic will see brief unavailability of service.

This slide will show how in-place update works in detail.

As an example, an OSGi application contains three bundles: B1 is a user of a service interface provided by
bundle B2 and implemented by B3. The current deployment manifest for the application lists bundle B3 at
version 1.0.0. Then a new deployment for the application is created that lists bundle B3 at version 1.0.1. After
clicking “Update to latest deployment,” reviewing the changes, and then clicking OK, these four steps are
taken to update the application.

In step 1, The existing B3 bundle is quiesced, meaning it receives no new traffic and is allowed to finish
processing existing requests. This is done by de-registering its service from the service registry.

Step 2, the B3 bundle is stopped and uninstalled from the OSGi framework.

In step 3, the new B3 bundle at version 1.0.1 is installed into the OSGi framework and started.

And finally, its implementation of the service is then registered in the service registry.

If at any of these steps an error occurs, the update is rolled back if possible.

The best way to exploit in-place update is to use OSGi service dynamics such as in the depicted scenario. In
the application, B3 supplies no packages to any other bundle - just a service implementation. Therefore
updating B3 does not cause any other bundle of the application to be restarted. However, B1 needs to be
written to cope with the short disappearance of the service that B3 provides. Using Blueprint in the
implementation of bundle B1 will provide ‘service damping’, meaning when the new service is available, it will
be injected into bean in bundle B1. That is, bundle B1 does not need to concern itself with the dynamic
aspects.

WASV85_OSGi_part2.ppt Page 21 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Application extensions – from V8.0 (1 of 2)

Application extension

A completely new feature added in version 8 is application extensions. Application
extensions allow the deployer to add and remove capabilities, in the form of composite
bundles, dynamically while the application is running.

Any composite bundle available from an external bundle repository or the internal bundle
repository can be installed as an extension. Installing or removing an extension creates a
new deployment, in a similar way to creating a new deployment by updating bundles in an
application. An application with a new deployment manifest containing an application
extension can be applied to the running application in the same way as a new deployment
manifest containing just updates: by using the “Update to latest deployment” button as
shown.

WASV85_OSGi_part2.ppt Page 22 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Application extensions – from V8.0 (2 of 2)

For example using
Blueprint reference-listener

OSGI-INF/blueprint/
blueprint.xml

OSGI-INF/blueprint/
blueprint.xml

tradeManager

trade service 2

TradeService API

OSGI-INF/blueprint/
blueprint.xml

trade service 3

OSGI-INF/blueprint/
blueprint.xml

trade service 1

<blueprint>
<bean id=”manager” class=”org.acme.TradeManagerImpl” >

<property name=”tradeServices” ref=”tradeServices” />
</bean>
<reference-list id="tradeServices" interface="org.example.TradeService" >

<reference-listener
bind-method="bind" unbind-method="unbind" >

<bean class="org.acme.ReferenceListener" />
</reference-listener>

</reference-list>
</blueprint>

Application

A convenient way to make use of application extensions is with Blueprint reference-
listeners. In the depicted application the tradeManager bundle can interact with several
different trade services. The trade services are located in composite bundles that are
installed as extensions and are transparently made available in the list of trade services
available to the tradeManager. In addition the ReferenceListener receives callbacks for
new trade services or trade services going away.

WASV85_OSGi_part2.ppt Page 23 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Administering application extensions – from V8.0

� An extension is a composite bundle archive (CBA) containing one or
more bundles. WebSphere Application Server administrator steps:

– Install extensions (.cba) in Internal Bundle Repository
– Add extensions to Application through “Manage extensions”
– When ready, update to latest deployment

• Providing any extension configuration
– Well designed extensions cause zero down-time
– Golden design for extension:

• Import packages from application
• Export services to application

– An OSGi equivalent to an Eclipse extension

First the composite bundle containing the extension must be installed to either the internal
bundle repository or made available in a configured external bundle repository. The next
step is to navigate to the business level application in which the OSGi application is
deployed and then the deployed asset for the OSGi application. The link named “Manage
extensions for this composition unit” will allow you to start the process for creating a
deployment manifest. Then the “Update to Latest Deployment” button will activate it.

With application extensions, OSGi applications can be extended with additional capability
with zero down-time to the running application.

WASV85_OSGi_part2.ppt Page 24 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Performance monitoring infrastructure (PMI) – from V8.0 (1 of 2)

The Performance Monitoring Infrastructure has been enhanced to track the number of
invocations and the response times of OSGi applications. There are three levels of
granularity: basic, which monitors at the OSGi service level; extended, which monitors at
the method level of OSGi services; and all, which monitors at the blueprint bean method
level.

Web Application Bundles are monitored by the regular web container monitoring.

WASV85_OSGi_part2.ppt Page 25 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Performance monitoring infrastructure (PMI) – from V8.0 (2 of 2)

The performance viewer can be used to visualize the performance data for OSGi
applications.

WASV85_OSGi_part2.ppt Page 26 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Other enhancements in V8.0

� Java EE 6 content in OSGi applications
– For example, annotated servlet 3.0 components in web application bundles

� CBAs can be included as part of Application-Content

� CBAs can contain WABs

� Batch upload to Internal Bundle Repository

� Administrative Bundle Cache management

� Web component access to Blueprint components through JNDI or @Resource injection
– Blueprint Service references insulate web components from OSGi dynamic service life

cycle
– OSGi services accessible through JNDI since V7

Other enhancements have been made in WebSphere Application Server V8.0 to the OSGi
applications capability. Web Application bundles now contain annotated servlet 3.0
components.

With V8, Composite Bundle Archives can be included as isolated content in an application.
That is, they can be present in the Application-Content header of the application’s
application manifest file. Additionally these composite bundles can contain Web
Application Bundles

Multiple bundles can be uploaded to the Internal Bundle Repository in one action by
providing them in an archive file.

The Bundle Cache can now be managed administratively.

Web components may now access Blueprint components through JNDI or @Resource
injection. In addition Blueprint Service references will insulate web components from the
OSGi dynamic service life cycle.

WASV85_OSGi_part2.ppt Page 27 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

OSGi applications console (new in V8.5)

� Command-line console from V7 now complemented by integrated administrative
console version

� View applications
� Drill down on content bundles
� View packages, services and dependencies
� View wiring into the shared bundle space

The OSGi Applications Console is an addition to WebSphere Application Server V8.5
administrative console. You can explore or debug bundles by interrogating the contents of
OSGi frameworks used by a running application. You can view the package and service
dependencies of bundles running in the application and the way individual bundles are
wired to each other to ensure their package dependencies are resolved.

This facility is provided as a valuable debugging aid and to generally view how the
application’s modules are connected at runtime.

WASV85_OSGi_part2.ppt Page 28 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

OSGi and SCA: The assembly food chain

POJOs assembled using a Blueprint
context and scoped by an OSGi bundle .

OSGi bundles assembled in an OSGi
application and integrated through
services in the OSGi service registry

SCA composite assembled from
heterogeneous components including an

OSGi application component, and
integrated through SCA services with

configurable bindings (JMS, web
services…).

OSGi application

BundleBundle

Bundle

POJO

POJO

POJO

SCA composite

Component

EARPOJO

You have seen how Plain-Old-Java-Objects (or POJOs for short) can be assembled and
configured in a Blueprint bundle and how multiple bundles including web and persistence
bundles can be assembled into an isolated OSGi Application.

There is a further level of assembly available to OSGi applications into a Service
Component Architecture composite to provide a Service Oriented Architecture abstraction.
Within an SCA composite the OSGi Application is a component that can be wired to other
components with different implementation types. For example, an SCA composite can
contain an OSGi-application component, a JEE component containing Enterprise Java
Beans and so on. Each component within an SCA composite declares abstract services
and references to which concrete bindings can be applied and it is through these services
and references that the components of an SCA composites are wired together. The OSGi
Application architecture was designed with this form of assembly in mind so that the
services and references declared in a Blueprint XML configuration can be exposed
through the Application manifest to be visible outside the application. Such exposed
services and references can then be mapped to SCA services and references with the full
range of available SCA bindings applied to them.

This enables OSGi applications to participate in two new scenarios:

First, they can be assembled into heterogeneous composites of OSGi and non-OSGi
components.

Second, OSGi services they provide can be provided remotely through SCA services with
a variety of bindings including JMS, SOAP over HTTP, IIOP, and JSON-RPC.

WASV85_OSGi_part2.ppt Page 29 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

OSGi application development tools

SCA / OSGi
Integration

SCA / OSGi
Integration

OSGi developer tools

Graphical
application editor

Developer productivity
(like content assist, validation, re-factoring)

Graphical creation
wizards

Creation / import /
export tools

Tutorials and
documentation

Publish
and run

WAS V8
server support

WAS V8
Test Env

Bundle
explorer

WAS V8.5
server support

WAS V8.5
Test Env

Bundle project

Blueprint (graphical editor)

JPA Web EJB

OSGi app
project

Composite
bundle
project

SCA/OSGi
integration*

Eclipse
WTP PDE

OSGi developer tools
Provide integrated development and test of OSGi

Applications on the WebSphere platform

� Available in Rational Application Developer V8.5
� http://www-01.ibm.com/software/awdtools/developer

/application/index.html
� Also available in WebSphere Application Server V8.5 Developer

Tools V8.5
� http://marketplace.eclipse.org/node/169799

� Integrated with Web Tools, JEE productivity tools, and other
capabilities

� Deployment to WebSphere Application Server V7 OSGi FeP
(Rational Application Developer only), WebSphere Application
Server V8 & WebSphere Application Server V8.5

� *Rational Application Developer adds Service Component
Architecture (SCA) SOA tools with support for OSGi applications

The tools support is structured so that server-independent development and assembly
tools can be installed as a plug-in into any Eclipse Web Tools Platform (or WTP for short)
environment. While this is pre-integrated in Rational Application Developer V8.5, the
availability of the new tools in Eclipse WTP configurations other than Rational Application
Developer better enables these common tools to be used to develop OSGi Applications
for deployment to Geronimo and, in the future, application servers other than WebSphere
that integrate the Apache Aries runtime components.

The development tools include the OSGi Application project type, the OSGi Composite
Bundle project type and the OSGi Bundle project type. Enterprise Bundle Archive files, or
.eba files can be imported and exported. Form-based editors for bundle manifests,
application manifests and Blueprint configuration files, tutorials, and documentation all
assist with the creation of OSGi Applications.

Additionally integrated into Rational Application Developer V8.5 are WebSphere
deployment tools, a WebSphere Application Server test environment, enhanced validation
tools, and integration with Web and JEE productivity tools.

WASV85_OSGi_part2.ppt Page 30 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Summary

� OSGi is a mature modularity system for Java that has been used inside tools and runtime infrastructure for many
years

� WebSphere Application Server OSGi Application support enables OSGi technology to be used by enterprise
applications

� For Developers: new tools and techniques that enable and encourage development of modular applications
– Explicit dependency management from development projects through to runtime bundles

• Module relationships BY DESIGN rather than BY OPPORTUNITY
– Simpler class path and visibility rules
– POJO development and container-managed dynamic services through Blueprint DI
– SCA Assembly into SOA components

� For Operations: enhanced modular deployment process, exploiting OSGi metadata
– Integrated bundle repository to simplify deployment and management of common application infrastructure,

simplifying module sharing and version handling
– Mature, standard mechanism for managing multiple versions of jars (bundles) concurrently
– In-place, dynamic application extension and update
– Repeatable, consistent behavior that can progressed from QA to Production

� New 8.5 features grow the programming model coverage
– Modular EJB
– Blueprint Security

� New 8.5 integrated console makes it even easier to track down and resolve module dependency problems

OSGi is a mature modularity system for Java that has been used inside tools and runtime
infrastructure for many years. WebSphere Application Server OSGi Application support
enables OSGi technology to be used by enterprise applications. For Developers there are
new tools and techniques that enable and encourage development of modular
applications. There is explicit dependency management from development projects
through to runtime bundles. The module relationships at runtime are BY DESIGN rather
than BY OPPORTUNITY, which has the effect of providing simpler class path and class
visibility rules.

The tools promote POJO development and container-managed dynamic services through
standard Blueprint Dependency Injection. And OSGi applications can be assembled into
heterogeneous applications using the Service Component Architecture. For server
operators there is an enhanced modular deployment process, exploiting OSGi metadata.
The integrated bundle repository enables deployment and management of common
application infrastructure, simplifying module sharing, and version handling. A mature,
standard mechanism is provided for managing multiple versions of bundle jars
concurrently.

The in-place update and dynamic application extension available from WebSphere
Application Server V8 provides additional options for dynamic application management.
And the deployment mechanism provides a repeatable, consistent behavior that can
progress from Quality Assurance to Production. From version 8.5 OSGi applications now
include Enterprise JavaBeans and secure Blueprint access to bean methods by security
role. The new integrated consoles makes it even easier to track down and resolve module
dependency problems.

WASV85_OSGi_part2.ppt Page 31 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Additional references

� Intro paper on WebSphere OSGi application feature
http://www.ibm.com/developerworks/websphere/techjournal/1007_robinson/1007_robinson.html

� OSGi best practices
http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html

� Enterprise OSGi YouTube Channel:
http://www.youtube.com/user/EnterpriseOSGi

� Redbook: OSGi Applications and JPA 2.0:
http://www.redbooks.ibm.com/redpieces/abstracts/sg247911.html?Open

� WebSphere Discussion forum for OSGi applications:
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1928

� WebSphere Application Server V8
http://www.ibm.com/software/webservers/appserv/was/

� WebSphere Application Server V7 Feature Pack for OSGi Applications
http://www.ibm.com/websphere/was/osgi

� Rational Application Developer V8.0
http://www.ibm.com/software/awdtools/developer/application/index.html

Here are several links where you can learn more about OSGi.

WASV85_OSGi_part2.ppt Page 32 of 33

© 2012 IBM CorporationOSGi application support in WebSphere Application Server

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASV85_OSGi_part2.ppt

This module is also available in PDF format at: ../WASV85_OSGi_part2.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASV85_OSGi_part2.ppt Page 33 of 33

© 2012 IBM Corporation

Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, Rational, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM
trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

