
CEAFP_Annotations.ppt

This presentation covers the new annotation-based programming model for SIP 

applications that was introduced in the SIP servlet 1.1 specification.

Page 1 of 16



CEAFP_Annotations.ppt

The first section of this presentation provides a brief overview of annotation-based 

development, and the second section takes a look at some examples of the new SIP-

related annotations that were added in the JSR 289 SIP servlet 1.1 specification.

Page 2 of 16



CEAFP_Annotations.ppt

This section provides a brief overview of annotation-based development.

Page 3 of 16



CEAFP_Annotations.ppt

The SIP servlet 1.1 specification introduces an annotation-based programming model for 

SIP servlet applications, similar to how annotations are used throughout the Java EE 5 

specification. Annotations improve the development experience by simplifying the code 

being created. Annotations allow you to embed metadata directly into applications, rather 

than having to use deployment descriptors. Deployment descriptors are still an option, and 

will override settings described in the annotations, but they are not required.

Resource injection is a simplified model for pulling resources, like SIP utility classes or 

Enterprise JavaBeans, into an enterprise application, and the new SIP servlet annotations 

in JSR 289 support resource injection. Because of the use of annotations in the SIP 

servlet 1.1 specification, to use this specification, you need to be using versions of Java 

that support annotations Java SE 5 and Java EE 5, both of which are supported in 

WebSphere Application Server Version 7.

Page 4 of 16



CEAFP_Annotations.ppt

This section describes some of the new annotations introduced as a part of the SIP servlet 

1.1 specification.

Page 5 of 16



CEAFP_Annotations.ppt

The @SipServlet annotation is used to indicate that a class is a SIP servlet; it allows 

SipServlet metadata to be declared without having to create a deployment descriptor. 

Certain values in the deployment descriptor are no longer required since they can now be 

declared in the source file of the servlet itself. The servlet-class field is not needed since 

the annotation is declared in the class. The servlet-name field is replaced by the name 

element on the SipServlet annotation. If no value is provided for the name element, the 

default behavior is to use the short name of the class. The second element in the 

SipServlet annotation is the applicationName. This is an optional element; it can also be 

defined in the deployment descriptor or using a special @SipApplication annotation. The 

loadOnStartup element defines the starting order of the servlet application within the 

system. The default value is a negative number, which allows the container to choose 

when to start the servlet. Finally, the init-parm field is not useful since it can just as easily 

be a static constant in the source file where the annotation is declared.

Page 6 of 16



CEAFP_Annotations.ppt

This page shows an example of how to use the @SipServlet annotation to define a 

SipServlet. This example defines the name of the SipServlet as CallWaitingService. Notice 

that this is different than what the default name would have been if this element had been 

omitted from the @SipServlet annotation. This annotation also defines the optional 

applicationName element. If the applicationName is not set here, it must either be set in a 

deployment descriptor or using the package level @SipApplication annotation; otherwise, 

the container treats it as a deployment error. The description element, also optional, can 

help the consumer of an application understand better what the SipServlet is and what it 

does. The loadOnStartup element is set to a non-negative number, so the container will 

use the defined startup weight to start this application. For all servlets with a defined 

startup weight, the container must start the servlets beginning with the lowest number.

Page 7 of 16



CEAFP_Annotations.ppt

A SIP application is a logical entity that contains a set of servlets and listeners with some 

common configuration. The @SipApplication annotation is used to define common 

configuration information about an application. Unlike most other annotations, 

@SipApplication is a package level annotation that is defined in a special source file, 

package-info.java. All of the servlets in the package described in package-info.java belong 

to the same application, unless one of the servlets in the application package overrides the 

application name using the @SipServlet annotation, as described earlier. Regardless of 

whether annotations or the deployment descriptor is used, only one SIP application can be 

registered with the container per SAR or WAR file.

Page 8 of 16



CEAFP_Annotations.ppt

The name element of the @SipApplication annotation is the only required field. It replaces 

app-name from the deployment descriptor and defines the name that listeners and servlets 

reference when adding themselves to this logical application. The displayName element is 

not required, and defaults to the application name; it is equivalent to the display-name field 

from the deployment descriptor. The optional icon elements can each take a simple string 

that specifies the location of the image to use for the application's icon, relative to the root 

path of the archive that contains the class. The description element is also optional and is 

meant to contain a string that describes the behavior of the application, to help a 

consumer of the application understand what it does. The distributable element indicates 

to the container whether this application is developed to properly function in a distributed 

environment. The default for distributable is false, so the application developer must set 

this element to true if he wants the application to run in a distributed environment. The 

proxyTimeout element specifies, in whole seconds, the default timeout for all proxy 

operations in this application. The container can override this value as a result of its own 

local policy. The sessionTimeout specifies, in whole minutes, the default session timeout 

for all application sessions created in this application. Note that this timeout is for 

application sessions, and not SIP sessions, because the lifetime of the SIP session is tied 

to that of the parent application session. If this is set to a non-positive number, then the 

behavior of the sessions is that they never time out. The mainServlet element of the 

@SipApplication annotation defines which servlet is designated as the main servlet of the 

application. A main servlet must be defined for any application that contains multiple 

servlets. When the application router tells the container to call into an application to 

process a request, the main servlet is invoked for the initial request.

Page 9 of 16



CEAFP_Annotations.ppt

The @SipApplication annotation needs to be defined in a special package-info.java file 

that is included in the application archive. This example shows an example of the syntax 

for this annotation. The name element is the only one that is required, all other fields are 

optional. In this case, the application developer is explicitly overriding the default 

distributable setting and the default session timeout. This application is then defined to 

function properly in a distributed environment, and has a session timeout of 60 minutes.

Page 10 of 16



CEAFP_Annotations.ppt

The @SipListener annotation provides an alternative to the listener field in the deployment 

descriptor. It allows the application developer to specify a listener without declaring it in the 

deployment descriptor of the application. The listener type is inferred from the interfaces 

implemented by the target class. The @SipListener annotation does not have any required 

fields, but can take an optional application name and description. The class annotated by 

@SipListener must implement at least one of the listener interfaces described in JSR 289.

Page 11 of 16



CEAFP_Annotations.ppt

The @Resource annotation can be used to inject an instance of a SipFactory, without 

having to do ServletContext lookup for the SipFactory from within a servlet. The two code 

snippets shown on this slide illustrate the previous method of creating a SipFactory 

instance, and the new method for creating the factory using resource injection with 

annotations. The two snippets are functionally equivalent. The @Resource annotation can 

be used to inject an instance of the SipFactory in any SIP servlet or in a Java EE 

application component deployed on a converged container in the same EAR file. Other 

resources, like Enterprise JavaBeans, can also be instantiated using resource injection, 

using the same syntax available in the Java EE 5 specification.

Page 12 of 16



CEAFP_Annotations.ppt

This section contains a summary and reference.

Page 13 of 16



CEAFP_Annotations.ppt

Annotations are a key component of many Java-based programming models, including 

Java EE 5, and an annotation-based programming model has been added to the SIP 

servlet specification in Version 1.1 (JSR 289). Annotations help simplify application 

development by making it easy to define application components, inject resources 

including SIP resources and other Java resources directly into applications, and 

simplifying the application packaging model by eliminating the need for deployment 

descriptors in some cases.

Page 14 of 16



CEAFP_Annotations.ppt

The JSR 289 specification document provides comprehensive information on all of the 

new annotations that are a part of the SIP servlet 1.1 standard.

Page 15 of 16



CEAFP_Annotations.ppt Page 16 of 16


