

®

IBM Software Group

© 2009 IBM Corporation

Updated August 3, 2009

IBM WebSphere Application Server Feature Pack
for Communications Enabled Applications

Web services development

The IBM WebSphere Application Server Feature Pack for Communications Enabled
Applications allows you to access telephony services with Web service clients. This
presentation goes through the steps needed to create and deploy an application that can
manage telephone calls using the Web services interface, including how to configure the
application server. Formerly, this capability required building SIP servlets and a detailed
understanding of the SIP specification. The functionality in this feature pack greatly
reduces the amount of code required.

CEAFP_WebServicesDevelopment.ppt Page 1 of 38

IBM Software Group

2

Web services development © 2009 IBM Corporation

Agenda

�Manage telephone calls using a Web services
client

�Configuration

�Development

�Web service sample

�Configuring external Web service providers to use
the feature pack functionality

This presentation covers managing telephone calls using the CEA Web service,
configuring your server and system, and developing an application that uses the CEA Web
service. It then covers the Web service sample that is included in the feature pack. The
presentation ends with a brief overview of how to configure external Web service providers
to use the functionality in the feature pack.

CEAFP_WebServicesDevelopment.ppt Page 2 of 38

IBM Software Group

3

Web services development © 2009 IBM Corporation

Manage telephone calls using a Web servicesManage telephone calls using a Web services
clientclient

Section

First is a brief overview of the CEA Web service and an overview of the steps needed to
create and deploy an application that can manage telephone calls using the Web services
interface.

CEAFP_WebServicesDevelopment.ppt Page 3 of 38

IBM Software Group

4

Web services development © 2009 IBM Corporation

CEA Web service

� IBM WebSphere Application Server Feature Pack
for Communications Enabled Applications allows
you to integrate telephony services into new and
existing applications using its Web services
interface

� The feature pack capability lets you:
�Open a session to start monitoring a telephone

�Get notifications about telephone activity

�Make telephone calls between two phones

�End an active telephone call

�Close a session to stop monitoring a telephone

IBM WebSphere Application Server Feature Pack for Communications Enabled
Applications allows you to integrate telephony services into new and existing applications
using its Web services interface. This functionality lets you open a session to start
monitoring a telephone and get notifications about telephone activity. You can also make
telephone calls between two telephones, end an active telephone call, and close a session
to stop monitoring a telephone.

CEAFP_WebServicesDevelopment.ppt Page 4 of 38

IBM Software Group

5

Web services development © 2009 IBM Corporation

CEA Web service

� The CEA Web service
�Communicates over the HTTP protocol used on the Web

�XML messages follow the SOAP standard

�Description of operations offered by the service are
written in Web Services Description Language (WSDL)

A Web service is designed to support interaction over a network and is frequently just Web
application programming interfaces that can be accessed over a network, and run on a
remote system hosting the requested services. A typical Web service application
communicates over the HTTP protocol used on the Web. In the feature pack functionality,
a Web service uses XML messages that follow the SOAP standard where there is a
machine-readable description of the operations offered by the service written in the Web
Services Description Language (WSDL). The WSDL file can be interpreted by Web
service tools to generate the Web services client code needed to communicate with the
Web service. As a result, an application developer need only call the correct set of Java
APIs to manage telephone calls in an application.

CEAFP_WebServicesDevelopment.ppt Page 5 of 38

IBM Software Group

6

Web services development © 2009 IBM Corporation

Steps to accessing telephony services with WS

�Enable the CEA system application

�Configure your application server to support the
CEA Web service

� Install IP-PBX

�Configure the IP-PBX location

�Restart your server

�Develop an application

� Install and start your application

In order to access telephony services with Web services you need to follow these steps.
First, enable the CEA system application in your WebSphere Application Server. Second,
configure your application server to support the CEA Web service. Third, install and
configure your IP-PBX and restart your server. Then develop your application and install
and start your application.

CEAFP_WebServicesDevelopment.ppt Page 6 of 38

IBM Software Group

7

Web services development © 2009 IBM Corporation

ConfigurationConfiguration

Section

The next few slides will walk through the configuration steps that need to be done in order
to access telephony services with Web services.

CEAFP_WebServicesDevelopment.ppt Page 7 of 38

IBM Software Group

8

Web services development © 2009 IBM Corporation

Enable CEA system application

�Update the configuration for each server running
communications enabled applications
�In the administrative console, click Servers > Server

Types > WebSphere application servers > server_name >
Communications Enabled Applications (CEA)

�Ensure the check box labeled Enable communications
service is checked

First, enable the CEA system application. For each server running communications
enabled applications, update the configuration to ensure that communications service is
enabled. In the administrative console, click Servers > Server Types > WebSphere
application servers > server_name > Communications Enabled Applications (CEA).
Ensure the check box labeled Enable communications service is checked as shown
here.

CEAFP_WebServicesDevelopment.ppt Page 8 of 38

IBM Software Group

9

Web services development © 2009 IBM Corporation

Configure application server to support the
CEA Web service
� Included in the feature pack is a script that applies these

changes to the base application server configuration:
�Creates a Service Integration Bus

�Creates a WS-Notification service

�Creates a service point associated with the previously-created service

�Starts the deployed service point enterprise application

� Take the following actions to run this script:
�Ensure the application server is started

�Change directories to <CEA_Profile_Root>/bin

�Issue the following command: wsadmin -f
<WAS_HOME>/feature_packs/cea/scripts/CEA_WSN_JAXWS_Setup
.py

Configure your application server to support the CEA Web service. The CEA Web service
support is built on WS-Notification. Infrastructure in the base application server must be
created to enable this support. To simplify this setup, a script is provided in the feature
pack installation.

The script applies changes to the base application server configuration. It creates a
Service Integration Bus, creates a WS-Notification service, creates a service point
associated with the previously-created service, and starts the deployed service point
enterprise application.

To run this script, first ensure the application server is started. Second, change directories
to <CEA_Profile_Root>/bin. Finally, issue the wsadmin command shown here.

CEAFP_WebServicesDevelopment.ppt Page 9 of 38

IBM Software Group

10

Web services development © 2009 IBM Corporation

IP-PBX

� The CEA capability requires an IP private branch
exchange (PBX) as part of your infrastructure

�A sample IP-PBX application is included in the
application server installation
�Install and start the SIP IP-PBX sample application

� <WAS_HOME>/feature_packs/cea/samples/commsvc.pbx.ear

�Along with the sample IP-PBX, two soft phones are
needed to test the application

The communications enabled applications capability requires an IP private branch
exchange (PBX) as part of your infrastructure. An IP-PBX is a business telephone system
designed to deliver voice over a data network and interoperate with the Public Switched
Telephone Network (PSTN). A sample IP-PBX application is included in the application
server installation. The sample IP-PBX is in the form of an application enterprise archive
(EAR) file and is for test purposes only. The details of installing and configuring a vendor-
specific IP-PBX are not provided. The IP-PBX must support the ECMA TR/87 protocol.
Along with the sample IP-PBX, two soft phones are needed to test the application.

To set up a sample IP-PBX application that you can use for unit testing in the absence of
an official PBX, start the application server where you deploy the sample IP-PBX
application. Then install the SIP IP-PBX sample application. Then start the application.

CEAFP_WebServicesDevelopment.ppt Page 10 of 38

IBM Software Group

11

Web services development © 2009 IBM Corporation

Configure the IP-PBX location
� In the administrative console, click

Servers > Server Types >
WebSphere application servers >
server_name > Communications
Enabled Applications (CEA)

� Use the CEA settings page to
select the Use SIP CTI (ECMA
TR/87) gateway for telephony
access option and configure the
following fields:
�Host name or IP address
�Port
�Protocol (TCP)
�Superuser name

� Restart the application server

After installing and starting the IP-PBX, you will then need to configure the IP-PBX
location. In the administrative console for the server where the CEA system application is
running, click Servers > Server Types > WebSphere application servers > server_name >
Communications Enabled Applications (CEA). On the CEA settings page, select “Use SIP
CTI (ECMA TR/87) gateway for telephony access” and configure the host name or IP
address, port, protocol, and superuser name fields. Be sure to set the fields based on the
server that is running the PBX application.

Use the host name field to provide the fully-qualified host name or IP address of the SIP
CTI gateway that the CEA services connect to; the default is localhost. The port field
specifies the port number of the SIP CTI gateway for connection communication services.
For the TCP Protocol, the port is the SIP_DEFAULTHOST for the server that is running
the PBX application; the default is 5060. If you are not using the default port then enter
your port number here. In the protocol field, provide the protocol to use when connecting
to the SIP CTI gateway; the default is TCP. The superuser name field specifies the name
that is used when opening a new session to the gateway; the default is root. Be sure to
restart the application server.

CEAFP_WebServicesDevelopment.ppt Page 11 of 38

IBM Software Group

12

Web services development © 2009 IBM Corporation

DevelopmentDevelopment

Section

Now that you have your application server configured you can now integrate telephony
services into new and existing applications.

CEAFP_WebServicesDevelopment.ppt Page 12 of 38

IBM Software Group

13

Web services development © 2009 IBM Corporation

Development process

� Obtain WSDL files and associated schema file

� Generate through JAX-WS a client using
ControllerService.wsdl

� Write code to call methods against the Web service client

� Adding notification
�Generate through JAX-WS a service implementation class using

CeaNotificationConsumer.wsdl

�Implement the notify method to receive and process notification
messages

� The rest is handled by the runtime

The development process is outlined here. In communications enabled applications, a
Web service uses XML messages that follow the SOAP standard where there is a
machine-readable description of the operations offered by the service written in WSDL.
The WSDL file can be interpreted by Web service tools to generate the Web services
client code needed to communicate with the Web service. The feature pack includes two
main machine-readable descriptions of the operations offered by the CEA Web service
written in WSDL. You will first obtain the WSDL files ControllerService.wsdl and
CeaNotification.wsdl and associated schema files that come with the feature pack. The
ControllerService.wsdl file generates through JAX-WS the Web services client code
needed to communicate with the Web service. Generated files include openSession,
closeSession, makeCall, and endCall. As a result, you need only call the correct set of
Java APIs to manage telephone calls in an application. Your code should include method
calls to open a session, make a call, end a call, and close a session.

The CEA Web service support is built on WS-Notification. The
CeaNotificationConsumer.wsdl follows WS-Notification allowing the CEA Web service to
participate in publish and subscribe messaging patterns. The WSDL describes the
consumer service. The CeaNotificationConsumer.wsdl file generates through JAX-WS a
service implementation class, CeaNotificationConsumerSOAPImpl.java and a
NotificationConsumer.java file. As a result, you just need to Implement the notify() method
to receive and process notification messages, notifying you of the call status. The rest is
handled by the runtime; neither the client code nor the provider code are required to write
or parse SOAP messages.

CEAFP_WebServicesDevelopment.ppt Page 13 of 38

IBM Software Group

14

Web services development © 2009 IBM Corporation

Obtain the WSDL files

�Point your Web browser to
�http://host:port/commsvc.rest/ControllerService?wsdl

�http://host:port/commsvc.rest/CeaNotificationConsumer?
wsdl

�WSDL file created in the file system during installation is
read by the Web services infrastructure

�Save the file and import it into your application

� Import associated schema file
�http://host:port/commsvc.rest/ControllerService/WEB­

INF/wsdl/ControllerService_schema1.xsd

The feature pack includes two main machine-readable descriptions of the operations
offered by the CEA Web service written in WSDL. In order to obtain the WSDL files point
your Web browser to the two URLs shown here.

In these URLs, “host” is the IP address or host name on which the Web container is
listening, and “port” is the port number on which the Web container is listening.

When you do this, the WSDL file created in the file system during installation is read by
the Web services infrastructure, and the correct host and port are configured in the WSDL
file sent to the browser. Save the file and import it into your application. You will also need
to import the associated schema file, which is the last URL listed on this slide.

CEAFP_WebServicesDevelopment.ppt Page 14 of 38

IBM Software Group

15

Web services development © 2009 IBM Corporation

ControllerService.wsdl

The ControllerService.wsdl file contains description of the operations offered by the
service. Using Web service tools, you can generate the Web services client code needed
to communicate with the Web service. Generated files include openSession, makeCall,
endCall, and closeSession. On this slide is a visual display of the WSDL file.

CEAFP_WebServicesDevelopment.ppt Page 15 of 38

IBM Software Group

16

Web services development © 2009 IBM Corporation

CeaNotificationConsumer.wsdl

The CeaNotificationConsumer.wsdl follows WS-Notification, allowing the CEA Web
service to participate in publish and subscribe messaging patterns. The WSDL describes
the consumer service. The CeaNotificationConsumer.wsdl file generates through JAX-WS
a service implementation class, CeaNotificationConsumerSOAPImpl.java and a
NotificationConsumer.java file. As a result, you just need to Implement the notify() method
to receive and process notification messages, notifying you of the call status. On this slide
is a partial visual display of the WSDL file.

CEAFP_WebServicesDevelopment.ppt Page 16 of 38

IBM Software Group

17

Web services development © 2009 IBM Corporation

Generating Java artifacts

� JAX-WS tools support generating Java artifacts
when starting with a WSDL file
�Create a service client from a WSDL

�Create a skeleton bean from a WSDL

�Rational Application Developer has the Web
services tools that use the WebSphere JAX-WS
runtime environment

�Command line tools available

The Java API for XML Web Services (JAX-WS) is a Java programming language API for
creating Web services. JAX-WS uses annotations to simplify the development and
deployment of Web service clients and endpoints. JAX-WS represents remote procedure
calls or messages using XML-based protocols such as SOAP, but hides SOAP's innate
complexity behind a Java-based API. Developers use this API to define methods, then
code one or more classes to implement those methods and leave the communication
details to the underlying JAX-WS API. Clients create a local proxy to represent a service,
then invoke methods on the proxy. The JAX-WS runtime system converts API calls and
matching replies to and from SOAP messages.

JAX-WS tools support generating Java artifacts when starting with a WSDL file. You can
create a service client from a WSDL file. Web service clients are created from a WSDL
document which describes where the Web service is deployed and what operations this
service provides. You can also create a skeleton bean from a WSDL file. The skeleton
bean contains a set of methods that correspond to the operations described in the WSDL
document. When the bean is created, each method has a trivial implementation that you
replace by editing the bean.

Rational Application Developer has the Web services tools that use the WebSphere JAX­
WS runtime environment. There are also command line tools available.

CEAFP_WebServicesDevelopment.ppt Page 17 of 38

IBM Software Group

18

Web services development © 2009 IBM Corporation

Rational Application Developer Web service wizard

� Switch to the Java EE
perspective

� Right click your WSDL file
�choose Web Services >

Generate client or
�Generate Java bean skeleton

� Select the stages of Web service
client to Develop, select your
server, runtime, and service
project

� For Generate Java bean
skeleton: select Top down Java
bean Web service as your Web
service type

� Files are generated

Using the WebSphere JAX-WS runtime environment Rational Application Developer has
the Web services tools that allow you to either create a service client from a WSDL file or
create a skeleton bean from a WSDL file. In order to use the Web service wizard in
Rational Application Developer follow these steps. First switch to the Java EE perspective
(Window > Open Perspective > Java EE). Import your WSDL file and associated schema
file. Right click your WSDL file and choose Web Services > Generate client or Generate
Java bean skeleton. For ControllerService.wsdl choose generate client and for
CeaNotificationConsumer.wsdl choose generate Java bean skeleton.

On the Web services page select the stages of Web service development that you want to
complete using the slider. This will set several default values on the remaining wizard
panels. You will want to set the slider to develop, which will develop the WSDL definition
and implementation of the Web service. This includes such tasks as creating the modules
that will contain the generated code, WSDL files, deployment descriptors, and Java files
when appropriate. Select your server, runtime, and service project.

If creating a Java bean skeleton from a WSDL be sure to select Top down Java bean Web
service as your Web service type. Top-down Web services development involves creating
a Web service from a WSDL file. Go through the rest of wizard selecting other details and
click Finish. Your Java files will then be generated.

CEAFP_WebServicesDevelopment.ppt Page 18 of 38

IBM Software Group

19

Web services development © 2009 IBM Corporation

Command line

� wsimport (top down) generates:
�Service endpoint interface (SEI)

�Service class

�Exception class that is mapped from the wsdl:fault class (if any)

�Java Architecture for XML Binding (JAXB) generated type values

� <WAS_HOME>\bin\wsimport -keep -b
<WAS_HOME>\util\ibm-wsn-jaxb.xml -wsdllocation
<WSDL_LOC> <WSDL_FILE>
�Example:

� C:\opt7\ibm\websphere\appserver\bin\wsimport -keep -b
C:\opt7\ibm\websphere\appserver\util\ibm-wsn-jaxb.xml -wsdllocation "WEB­
INF/wsdl/CeaNotificationConsumer.wsdl" CeaNotificationConsumer.wsdl

There are two main command line tools for working with JAX-WS to develop Web
services. WSImport is a top down development tool that will create the necessary beans,
service client, service endpoint interface, and wrappers from a provided WSDL file. The
WSGen command will create a WSDL document and wrappers when needed from Java
code with the proper Web service annotations.

Use wsimport, to process a WSDL file and generate portable Java artifacts that are used
to create a Web service client. Using the wsimport tool you can create Service endpoint
interface (SEI), and Service class. You also create the exception class that is mapped
from the wsdl:fault class (if any), and Java Architecture for XML Binding (JAXB) generated
type values which are Java classes mapped from XML schema types. Use the -verbose
option to see a list of generated files when you run the command. Use the -keep option to
keep generated Java files. Use the -wsdlLocation option to specify the location of the
WSDL file. Use the -b option if you are using WSDL or schema customizations to specify
external binding files that contain your customizations. You can customize the bindings in
your WSDL file to enable asynchronous mappings or attachments.

CEAFP_WebServicesDevelopment.ppt Page 19 of 38

IBM Software Group

20

Web services development © 2009 IBM Corporation

Generated files
� ControllerService.wsdl
�Web services client code

� CeaNotificationConsumer.wsdl
�Java service implementation

class and other generated Java
files

This picture shows the Web services client code that was generated from the
ControllerService.wsdl file and the Java service implementation class and other oasis files
that were generated from the CeaNotificationConsumer.wsdl file.

CEAFP_WebServicesDevelopment.ppt Page 20 of 38

IBM Software Group

21

Web services development © 2009 IBM Corporation

ControllerService.java
@WebServiceClient(name = "ControllerService", targetNamespace =

"http://impl.webservice.commsvc.ws.ibm.com/", wsdlLocation = "WEB­
INF/wsdl/ControllerService.wsdl")

public class ControllerService

extends Service

{

…

@WebEndpoint(name = "ControllerPort")

public Controller getControllerPort() {

JAX-WS uses annotations to simplify the development and deployment of Web service
clients and endpoints. Here is some of the code from the generated Java file
ControllerService.java. This file was generated from ControllerService.wsdl. Notice the
annotations. The @WebServiceClient is used to annotate a generated service interface.
The information specified in this annotation is sufficient to uniquely identify a wsdl:service
element inside a WSDL document. This wsdl:service element represents the Web service
for which the generated service interface provides a client view. The @WebEndpoint is
used to annotate the getPortName() methods of a generated service interface. The
information specified in this annotation is sufficient to uniquely identify a wsdl:port element
inside a wsdl:service.

CEAFP_WebServicesDevelopment.ppt Page 21 of 38

IBM Software Group

22

Web services development © 2009 IBM Corporation

What to code

�Write client side code to call methods against the
Web service client

� For notification
�Implement the notify method to receive and process

notification messages
� Notify method is in CeaNotificationConsumerSOAPImpl.java

�Add client side code to set the NotifyCallback in the Web
service request object

�Create a method to update the telephone session with
call status information that arrived in a WS-Notification

After generating your Java code from the WSDL files you will write client side code to call
methods against the Web service client. You will want to write client code to open a
session, make a call, end a call, and close a session. For notification you will need to
implement the notify method to receive and process notification messages. The notify()
method is in the CeaNotificationConsumerSOAPImpl.java file. After coding the notify
method you will want to add client side code to set the NotifyCallback in the Web service
request object. You will also want to create a method to update the telephone session with
call status information that arrived in a WS-Notification.

CEAFP_WebServicesDevelopment.ppt Page 22 of 38

IBM Software Group

23

Web services development © 2009 IBM Corporation

Sample code
public accessWebService () {

// Access the Web services client

controllerService = ControllerService();

if (controllerService!= null) {

controllerPort = controllerService.getControllerPort();

} … }

// Open a session to monitor/control a phone

public void openSession(String addressOfRecord, String notifyCallback) {

// Build a request object

CommWsRequest wsRequest = new CommWsRequest();

wsRequest.setAddressOfRecord(addressOfRecord);

wsRequest.setNotifyCallback(notifyCallback);

W3CEndpointReference EPR = controllerPort.openSession(wsRequest);

controllerPortWithEPR = EPR.getPort(Controller.class, new AddressFeature(true));

}

Here is some sample client code. This code shows a sample accessWebService() method
that gets access to the Web service client. Also, shown here is a sample openSession()
method. openSession() is called in order to start monitoring a telephone. In this method
you will first build the Web service request object, then access the Web service, and call
the Web service to open the session. You will use the endpoint reference (EPR) to create
a new object to make Web service calls on. The EPR includes information that allows the
Web service to map requests to this session. The EPR must be used in all other APIs
called related to the session monitoring that telephone. The EPR is critical for multiple
reasons. First, it allows for Web service interface to be simpler eliminating the need to
pass a state object as a parameter in all follow up requests. The EPR itself has enough
information for the Web service to track it. It is also used in a clustered environment to
ensure follow on requests go back to the same container monitoring the telephone.

Notice that notifyCallback is set. This is the URL needed to contact in order to trigger a call
notification (WS-Notification). For the URL the host and port must be where the Web
service client resides. The context root much match that of the WAR including this Web
services client, and the name at the end must match the service name in the
CeaNotificationConsumer.wsdl.

CEAFP_WebServicesDevelopment.ppt Page 23 of 38

IBM Software Group

24

Web services development © 2009 IBM Corporation

Sample code continued
// Make a call

public void makeCall(String calleeAddressOfRecord) {

// Build a request object

CommWsRequest wsRequest = new CommWsRequest();

wsRequest.setPeerAddressOfrecord(calleeAddressOfRecord);

// Make the call, using the EPR returned in openSession()

controllerPortWithEPR.makeCall(wsRequest);

}

// End an active call

public void endCall() {

// End the call, using the EPR returned in openSession()

controllerPortWithEPR.endCall(wsRequest);

}

// Close the session monitoring the phone

public void closeSession() {

// Close the session, using the EPR returned in openSession()

controllerPortWithEPR.closeSession();

}

This is sample code to make a call, end a call, and close a session. In this code, the callee
is the person being called. Note the use of the EPR in each of the methods.

CEAFP_WebServicesDevelopment.ppt Page 24 of 38

IBM Software Group

25

Web services development © 2009 IBM Corporation

Implement notify method

�Extract the list of notification messages

� Loop through the messages

�Get the message content as a DOM Element

�Build a CallStatus object out of the notification

� Loop through and match the text to a member of
the CallStatus object and set it

�Update the status of the associated client state
object

For notification you will need to implement the notify() method to receive and process
notification messages. The notify() method is in the
CeaNotificationConsumerSOAPImpl.java file. These steps list what a sample notify
method should contain. First you extract the list of notification messages. Next you loop
through the messages and get the message content as a DOM Element. You then build a
CallStatus object out of the notification by looping through and matching the text to a
member of the CallStatus object and setting it. Finally, you update the status of the
associated client state object. The notify() method is called automatically by the server's
notification broker when a notification takes place.

CEAFP_WebServicesDevelopment.ppt Page 25 of 38

IBM Software Group

26

Web services development © 2009 IBM Corporation

New application

� Bundle up your application that includes JAX-WS
“annotated” classes, WSDL, XSD schema, and any client
side code you created

� Install your sample

� Take the application-specific action that triggers the call to
the Web service API

� In order to open a session and monitor a telephone for
activity, you need to provide an address of record for your
telephone
�This can be a URI (uniform resource indicator) of a telephone

� A SIP URI, for example, has the format of sip:username@serviceprovider, which
represents the address of your telephone on the Internet

� Answer the source telephone when it rings

� Answer the destination telephone when it rings

After developing your application, bundle up your application that includes JAX-WS
“annotated” classes, WSDL, XSD schema, and any client side code you created. Install
your sample in your application server. Take the application-specific action that triggers
the call to the Web service API. In order to open a session and monitor a telephone for
activity, you need to provide an address of record for your telephone. This can be a URI
(uniform resource indicator) of a telephone. A SIP URI, for example, has the format of
sip:username@serviceprovider, which represents the address of your telephone on the
Internet. Answer the source telephone when it rings and answer the destination telephone
when it rings.

CEAFP_WebServicesDevelopment.ppt Page 26 of 38

IBM Software Group

27

Web services development © 2009 IBM Corporation

Web service sampleWeb service sample

Section

The next two slides show the Web service sample that is included in the feature pack.

CEAFP_WebServicesDevelopment.ppt Page 27 of 38

IBM Software Group

28

Web services development © 2009 IBM Corporation

Web services sample

� Included in the feature pack is a Web service sample
�Install the EAR file:

<WAS_HOME>\feature_packs\cea\samples\webservice.sample\c
ommsvc.ws.sample.ear

�Visit:
http://host:port/commsvc.ws.sample/CommWebServiceServlet

The feature pack includes a Web services sample. You can view the code and see the
generated Java files and sample client side code. In order to run the Web service sample,
you will need to install the sample. The sample is included in the feature pack and located
in the .ear file shown on this slide. After installing and starting the application, browse to
the URL shown here. In order to open a session and monitor a telephone for activity, you
need to provide an address of record for your telephone. This can be a URI of a
telephone. Enter the URI value in the telephone address of record field and select Open
session. Remember to complete the configuration steps earlier in the presentation before
running this sample.

CEAFP_WebServicesDevelopment.ppt Page 28 of 38

IBM Software Group

29

Web services development © 2009 IBM Corporation

Making a call
1 2

3 4

Starting in the left corner you will see that there is not a call going on yet, but your address
of record is filled in. Next enter a URI for the callee - the number that you want to call - and
click “Make call”. At the top right you will now see that the status is updated showing the
caller, callee and the call status stating that the call was delivered. On the bottom left after
both the phones are answered and after refreshing the status the call status will now state
that the call is established. Finally, if you click “End the call,” you will see on the bottom
right that the call status is cleared.

CEAFP_WebServicesDevelopment.ppt Page 29 of 38

IBM Software Group

30

Web services development © 2009 IBM Corporation

Configuring external Web service providersConfiguring external Web service providers

Section

This section shows the steps needed to configure an external Web service provider.

CEAFP_WebServicesDevelopment.ppt Page 30 of 38

IBM Software Group

31

Web services development © 2009 IBM Corporation

Using IP-PBX

� The feature pack for CEA provides Web telephony
services in the form of REST APIs in addition to a
Web service

�When invoked, a common core technology
interacts with an IP-PBX to monitor and control
phones
�This core technology can be substituted with an external

Web service to manage all communications with the IP­
PBX

The feature pack provides Web telephony services in the form of REST APIs in addition to
a Web service. When invoked, a common core technology interacts with an IP-PBX to
monitor and control telephones. This core technology can be substituted with an external
Web service to manage all communications with the IP-PBX.

CEAFP_WebServicesDevelopment.ppt Page 31 of 38

IBM Software Group

32

Web services development © 2009 IBM Corporation

External Web service provider

� If external provider creates a Web service that
supports the CEA WSDL, application can be
configured to use that provider
�External Web service provider must be deployed and

running on a server accessible from the application server
� WSDL file for the external service must be known and accessible using an

HTTP request

�This configuration replaces the need for the existing CEA
Web service, but the existing service can be used for
REST requests

The CEA Web service interface is described by a WSDL file. If an external provider
creates a Web service that supports this WSDL, then the communications enabled
application can be configured to use that provider. To use an external Web service
provider, it must be deployed and running on a server accessible from the application
server. The location of the WSDL file for the external service must be known and
accessible by using an HTTP request. Like the setup required when using the Web service
provided by the feature pack, you must start and configure an IP private branch exchange
(PBX) as well.

This configuration replaces the need for the existing CEA Web service, but the existing
service can be used for REST requests. As REST requests are received, the application
server uses a Web services client to communicate with the external Web service provider.
The external Web service provider manages all communications with the IP-PBX.

CEAFP_WebServicesDevelopment.ppt Page 32 of 38

IBM Software Group

33

Web services development © 2009 IBM Corporation

Configure the external Web service

� Install and configure the external Web service

� Configure the location of the third-party Web service WSDL
�In the administrative console, click Servers > Server Types >

WebSphere application servers > server_name > Communications
Enabled Applications (CEA)

�Under Telephony access method, select the Use a third-party Web
services provider for telephony access option

�Enter the HTTP URL of the third-party WSDL
�Save the settings and restart the server so that the new changes are

applied to the run time

You will need to install and configure the external Web service. For example, if the
external Web service is delivered as an application that is deployed on WebSphere
Application Server, you must install and configure the service on the local server.
Configure the location of the third-party Web service WSDL. In the administrative console,
click Servers > Server Types > WebSphere application servers > server_name >
Communications Enabled Applications (CEA). Under Telephony access method, select
“Use a third-party Web services provider for telephony access”. Enter the URL of the third-
party WSDL in the “Third-party Web services provider's WSDL” field. Save the settings
and restart the server so that the new changes are applied to the run time.

CEAFP_WebServicesDevelopment.ppt Page 33 of 38

IBM Software Group

34

Web services development © 2009 IBM Corporation

Summary and referencesSummary and references

Section

This section provides a summary and references.

CEAFP_WebServicesDevelopment.ppt Page 34 of 38

IBM Software Group

35

Web services development © 2009 IBM Corporation

Summary

� IBM WebSphere Application Server Feature Pack
for Communications Enabled Applications lets you
integrate telephony services into new and existing
applications using the Web services
interfaceObtain WSDL files and associated
schema file
�Generate client code using ControllerService.wsdl
�Write code to call methods against the Web service client

�Add Notification

�Web services sample

�Configure external Web service providers

This presentation talked about managing telephone calls using the CEA Web service,
configuring your server and system, and developing an application that uses the CEA Web
service. When developing an application, the main steps are to obtain the WSDL files and
associated schema files, then generate the Java code. With the generated Java code you
can just write client code to call methods against the Web service client. The CEA Web
service is based on WS-Notification. After you generate the code needed for notification,
you have to code the notify() method. The feature pack includes a Web service sample; be
sure to view the code and run the sample. You can also use an external Web service
provider to use communications enabled applications. The external Web service provider’s
role is to manage all communications with the IP-PBX.

CEAFP_WebServicesDevelopment.ppt Page 35 of 38

IBM Software Group

36

Web services development © 2009 IBM Corporation

References

� Web service
�http://www.w3.org/TR/ws-arch/

� SOAP
�http://www.w3.org/TR/soap/

� WSDL
�http://www.w3.org/TR/wsdl

� WS-Notification
�http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

� JAX-WS
�http://www.jcp.org/en/jsr/detail?id=224

� OASIS
�http://www.oasis-open.org/

This slide lists some useful references.

CEAFP_WebServicesDevelopment.ppt Page 36 of 38

IBM Software Group

37

Web services development © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_CEAFP_WebServicesDevelopment.ppt

This module is also available in PDF format at: ../CEAFP_WebServicesDevelopment.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

CEAFP_WebServicesDevelopment.ppt Page 37 of 38

IBM Software Group

38

Web services development © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

CEAFP_WebServicesDevelopment.ppt Page 38 of 38

