
WASv61_EJB3FP_JPAOverview.ppt

This presentation will cover the Java™ persistence API support in the WebSphere®

Application Server V6.1 Feature Pack for EJB 3.0.

Page 1 of 17



WASv61_EJB3FP_JPAOverview.ppt

This presentation will give a high-level overview of JPA, and explain the core JPA 

terminology.

Page 2 of 17



WASv61_EJB3FP_JPAOverview.ppt

This section will give a high-level overview of JPA.

Page 3 of 17



WASv61_EJB3FP_JPAOverview.ppt

Over the years, persisting data with EJBs has come to be a sore spot for many 

developers. Entity beans can be complicated and time consuming to write, even with the 

support of vendor-supplied tools. The heavyweight programming model can be less than 

ideal for many applications, particularly smaller scale applications. Many Java developers 

use custom persistence frameworks or plain JDBC to better meet their needs. As a result, 

several alternatives have emerged, offering lightweight and straightforward solutions for 

persisting Java objects to a relational database. EclipseLink and Hibernate are two 

popular solutions. The EJB 3.0 specification introduced JPA in response to these 

challenges, offering a lightweight, Plain-old Java object (POJO) based persistence 

framework.

Page 4 of 17



WASv61_EJB3FP_JPAOverview.ppt

The Java Persistence API is a standard framework that provides persistence and object-

relational mapping as a part of the EJB 3.0 specification. It is a Java standard that 

provides many of the benefits of alternative persistence frameworks, with the added 

benefit of portability to any EJB 3.0 compliant container, without having to install any extra 

libraries. It allows you to persist plain-old Java objects to a relational database – a much 

simpler approach than using container-managed persistence (CMP) in EJB 2.1. The JPA 

implementation in WebSphere Application Server is based on the open source Apache 

OpenJPA project.

Page 5 of 17



WASv61_EJB3FP_JPAOverview.ppt

In JPA, Entities are plain-old Java objects, just like other components in EJB 3.0. An entity 

typically represents a table in a relational database, and each instance of an entity is a 

row. Entities are concrete classes, not abstract classes like Entity Beans in EJB 2.1. You 

do not need to generate deployment code, which speeds deployment, and you do not 

have to implement any particular interfaces. Another benefit is that all object-relational 

mapping information is specified in a standard fashion, using Java annotations or XML 

files. In earlier versions of the EJB specification, there was not a standard way to provide 

this information, which meant each vendor’s implementation was different, and led to a 

reliance on vendor-specific tools. JPA can also be used without an EJB container, that is, 

in a Java Standard Edition (SE) environment.

Page 6 of 17



WASv61_EJB3FP_JPAOverview.ppt

JPA provides many features that you would expect in a persistence framework. You can 

manipulate entities in a disconnected fashion, and then write updates back to the 

database when you are done working with them. Entity life cycle listeners and callback 

methods give you the ability to take action when life cycle events occur, and are optional, 

just as they are for session beans and message-driven beans in EJB 3.0. There is robust 

support for key generation, including several different key generation methods, and 

composite key support. Complex relationship support is also available, enabling 

unidirectional or bidirectional relationships. 1-to-1, 1-to-many, and many-to-many 

relationships are supported. Several methods are available for finding entities in a 

relational database. A standard “find by primary key” method is available, and you can also 

query the database using either JPQL or native SQL. JPQL is the Java Persistence Query 

Language, the successor to EJB-QL.

Page 7 of 17



WASv61_EJB3FP_JPAOverview.ppt

This section will introduce some basic JPA concepts and terms.

Page 8 of 17



WASv61_EJB3FP_JPAOverview.ppt

A JPA Entity is a plain-old Java object that can be persisted to a relational database. The 

“@Entity” annotation marks a POJO class as an Entity, and enables it to be managed by a 

persistence provider. It is important to note that JPA Entities are not the same as EJB 1 or 

2 “Entity Beans”, despite the similar nomenclature. Entity life cycle is managed by an 

application, and entity beans are managed by the container.

Page 9 of 17



WASv61_EJB3FP_JPAOverview.ppt

A persistence unit defines the scope for entity persistence. You define a persistence unit in 

the persistence.xml file, and specify what entity classes are part of the persistence unit, 

which persistence provider and data source to use, and other properties about mapping 

your objects to the database. An EntityManagerFactory uses a persistence unit as its 

configuration. There is a 1:1 relationship between entityManagerFactories and persistence 

units.

Page 10 of 17



WASv61_EJB3FP_JPAOverview.ppt

The set of entities that are participating in a given unit of work are known as a “persistence 

context”. Each group of entities in a persistence context is managed by an entity manager.

Page 11 of 17



WASv61_EJB3FP_JPAOverview.ppt

An entity manager manages the task of persisting and loading objects in a relational 

database. You can use the EntityManager API to perform JPA tasks such as adding or 

updating entities to a database, removing entities from a database, or using query 

methods to find and load particular entities from a database. Entity managers can be 

either container-managed or application-managed. Most applications in Java EE 

environments will use container-managed entity managers, because it is the easiest way 

to use an entity manager. You can get an entity manager either by injection or by JDNI 

lookup. Since you do not have a container in a Java SE environment, you would use an 

application-managed entity manager, which you would obtain from an entity manager 

factory object. The presentation module titled “JPA code examples” will show how to use 

an entity manager in your application.

Page 12 of 17



WASv61_EJB3FP_JPAOverview.ppt

Java Persistence Query Language, or JPQL, is the latest revision of EJB-QL, the EJB 

query language. It introduces several new SQL-like features on top of the capabilities of 

EJB-QL, including bulk update and delete methods, “join” functions, “group by” and 

“having” functions, and support for dynamic queries and named query parameters.

Page 13 of 17



WASv61_EJB3FP_JPAOverview.ppt

This section will summarize the presentation content.

Page 14 of 17



WASv61_EJB3FP_JPAOverview.ppt

The Java Persistence API is a standard persistence and object-relational mapping 

framework that is part of the EJB 3.0 specification. It uses plain-old Java objects to 

represent items in a relational database. It is designed to be a persistence framework for 

Java EE that improves on prior EJB persistence models by addressing their inherent 

challenges, by being less complex and lighter-weight.

Page 15 of 17



WASv61_EJB3FP_JPAOverview.ppt

This slide lists some external resources that you may find useful for learning about JPA. 

You should also consult the WebSphere Application Server Feature Pack for EJB 3.0 

Information Center.

Page 16 of 17



WASv61_EJB3FP_JPAOverview.ppt Page 17 of 17


