

®

IBM Software Group

© 2009 IBM Corporation

Updated November 23, 2009

IBM WebSphere Application Server V7.0 Feature
Pack for Service Component Architecture V1.0.1

Web 2.0 support - ATOM

This presentation will talk about Web 2.0 support within the ATOM

WASV7SCA101_Web20_ATOM.ppt Page 1 of 17

 -

IBM Software Group

2

Web 2.0 support ATOM © 2009 IBM Corporation

Atom feed protocol in Java ™ (binding.atom)

� SCA Developer
�Define a reference to a external Atom Feed

�Expose your data collection as an Atom Feed

� The Feature Pack for SCA allows services to become
available as data feeds through the Atom Binding and
simplifies consuming and aggregating external feeds

� You can use this binding without any configuration, or by
providing a specific service URI:
�<t:binding.atom/>

�<t:binding.atom uri="http://www.oreillynet.com/pub/feed/35"/>

As an SCA Developer, you want to be able to define a reference to a external Atom Feed.
As an SCA Developer, you want to expose your data collection as an Atom Feed. The
Feature Pack for SCA allows services to become available as data feeds through the
Atom Binding and simplifies consuming and aggregating external feeds. You will use the
<binding.atom> extension. With the Feature Pack for SCA you can communicate with
services that provide or consume items described in the Atom Syndication Format and
Atom Publishing Protocol.

You can use this binding without any configuration, or by providing a specific service URI.

<t:binding.atom/>

<t:binding.atom uri="http://www.oreillynet.com/pub/feed/35"/>.

To access the feed directly, use the uniform resource indicator (URI).

WASV7SCA101_Web20_ATOM.ppt Page 2 of 17

 -

IBM Software Group

3

Web 2.0 support ATOM © 2009 IBM Corporation

Atom binding collections

� The Atom Publish Protocol provides REST style
access to data collections

�Services become available as Data Feeds through
Atom binding

� The Atom binding provides support for collections
�collection of items can be added, retrieved, updated, and

deleted using the four basic actions of the HTTP
� POST, GET, PUT, DELETE

�A collection that uses the Atom binding typically
implements the Collection interface given in the
package org.apache.tuscany.sca.data.collection

With the Feature Pack for SCA you can communicate with services that provide or
consume items described in the Atom Syndication Format and Atom Publishing Protocol.
The Atom Publish Protocol provides REST style access to data collections. The Atom
binding provides support for collections. The collection of items can be added, retrieved,
updated, and deleted using the four basic actions of the HTTP protocol.

POST (create or add)

GET (retrieve or query)

PUT (update)

DELETE (destroy or remove)

A collection that uses the Atom binding typically implements the Collection interface given
in the package org.apache.tuscany.sca.data.collection. This interface declares the basic
access methods mentioned above (post, get, put, and delete). For example, one can view
the collection as an Atom Feed, and manipulate items in the Feed as Atom Entries. It is up
to you to provide the code that implements the Collection interface. You also need to
provide the code that translates from the business objects to the Atom model objects Feed
and Entry.

As an SCA Developer, you want to expose your data collection as an Atom Feed. The
Feature Pack for SCA allows services to become available as data feeds through Atom
Binding and simplifies consuming and aggregating external feeds. The Java coding that
needs to be created to manipulate feeds, is minimal.

WASV7SCA101_Web20_ATOM.ppt Page 3 of 17

 -

IBM Software Group

4

Web 2.0 support ATOM © 2009 IBM Corporation

Consuming Atom services on the client application

�Any Atom client can be used to access the SCA
services which use the <binding.atom>

�Ways to consume Atom services on the client
application
�Utilizing implementation.widget

�Using SCA Atom services with Dojo

�Directly from a browser or other feed client

Any Atom client can be used to access the SCA services which use the <binding.atom>.
There are three ways to consume Atom services on the client application. One way is to
use the implementation.widget which is described in the overview. The other way is to use
SCA Atom services with Dojo. The last way is to just access the Atom services directly
from a browser or other feed client. To access the feed directly, you can use the uniform
resource indicator (URI) that the service specifies. The next few slides will show you in
more detail the two ways to consume Atom services.

WASV7SCA101_Web20_ATOM.ppt Page 4 of 17

 -

IBM Software Group

5

Web 2.0 support ATOM © 2009 IBM Corporation

Utilizing implementation.widget for Atom

�Widget Implementation (implementation.widget):
�Extends the SCA programming model to HTML or Web

2.0 client applications

�Atom allows you to model your HTML or Web 2.0 as an
SCA component
� HTML resource that represents the application

As mentioned earlier the Widget Implementation, implementation.widget, extends the SCA
programming model to HTML or Web 2.0 client applications. Using this for Atom allows
you to model your HTML or Web 2.0 as an SCA component. The implementation artifact
can be HTML resource that represents the application, and you can then define an Atom
reference, that can be wired to server side services.

WASV7SCA101_Web20_ATOM.ppt Page 5 of 17

 -

IBM Software Group

6

Web 2.0 support ATOM © 2009 IBM Corporation

Atom style access in widget (binding.atom)

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:t="http://tuscany.apache.org/xmlns/sca/1.0"
targetNamespace="http://store" name="store">

<component name="store">

<t:implementation.widget location="contents/store.html"/>

<reference name=“shoppingCart"
target=“ShoppingCart/Cart">

<t:binding.atom/>

</reference>

</component>

</composite>

Store composite

shoppingCart
reference

store

component

The code above shows a sample composite file. The component store contains the
implementation.widget. The implementation.widget component type allows you to model
your HTML as an SCA component. The implementation artifact is an HTML resource, and
above you can see how you can then define SCA References that can be wired to server
side services. A shoppingCart reference is defined for the store component which contains
a Atom binding. This shoppingCart reference can be wired through Atom binding to server
side services.

WASV7SCA101_Web20_ATOM.ppt Page 6 of 17

 -

IBM Software Group

7

Web 2.0 support ATOM © 2009 IBM Corporation

Programming model – Atom, using SCA enhanced JavaScript

REST data collection interface:
@Remotable
public interface Collection<K, D> {
/* Get the whole collection. */

Entry<K, D>[] getAll();
/* Returns a collection */

Entry<K, D>[] query(String queryString);
/* Creates a new item. */

K post(K key, D item);
/* Retrieves an item. */

D get(K key) throws NotFoundException;
/* Updates an item. */

void put(K key, D item) throws NotFoundException;
/* Delete an item. */

void delete(K key) throws NotFoundException;
}

Using SCA enhanced JavaScript:
<script language="JavaScript">

//@Reference
var cart = new
Reference(“shoppingCart");

cart.get(args);
</script>

Transformed into Dojo
Atom

Service definition in composite :
<component name=“ShoppingCart">

<implementation.java
class="services.ShoppingCartImpl”/>

<service name="Cart">
<t:binding.atom
uri=“ShoppingCart/Cart”/>

</service>
</component>

Reference definition in composite:
<t:implementation.widget location="contents/store.html"/>
<reference name=“shoppingCart“ target=“ShoppingCart/Cart">

<t:binding.atom/>
</reference> ShoppingCart

The code above depicts a more complete picture of how the shoppingCart reference can
be wired through Atom binding to server side services using implementation.widget. You
have starting in the left corner, a composite file that has a component that uses the
implementation widget. A reference named shoppingCart is then defined using a Atom
binding. This reference targets an existing service called Cart. That service is defined to
the top right in a composite file with a component name of ShoppingCart. This component
contains the service named Cart that is defined with a Atom binding. This component
defines its Java implementation to be ShoppingCartImpl.java. Notice on the bottom right
the ShoppingCartImpl.java file that contains REST data collection methods such as
getAll(), query(), post(), get(), put(), and delete(). Now lastly, you will notice the SCA
enhanced JavaScript code. Since widget implementation was used, you can now
introduce SCA annotations to the JavaScript code. You can introduce the shoppingCart
reference and easily now call the get() method that was defined in ShoppingCartImpl.java.

WASV7SCA101_Web20_ATOM.ppt Page 7 of 17
7

 -

IBM Software Group

8

Web 2.0 support ATOM © 2009 IBM Corporation

Atom binding (binding.atom)

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:t="http://tuscany.apache.org/xmlns/sca/1.0"
targetNamespace="http://store" name="store">

<component name="store">

<reference name=“shoppingCart"
target=“ShoppingCart/Cart">

<t:binding.atom/>

</reference>

</component>

</composite>

Store composite

shoppingCart
reference

Store

component

Now, you will see an example using SCA Atom services with Dojo. The above sample
composite shows a component named store that has a reference named shoppingCart.
This reference has a Atom binding defined. There is no Widget implementation used.

WASV7SCA101_Web20_ATOM.ppt Page 8 of 17

 -

IBM Software Group

9

Web 2.0 support ATOM © 2009 IBM Corporation

Programming model – Atom, using Dojo Atom directly

REST Data Collection Interface:
@Remotable
public interface Collection<K, D> {
/* Get the whole collection. */

Entry<K, D>[] getAll();
/* Returns a collection */

Entry<K, D>[] query(String queryString);
/* Creates a new item. */

K post(K key, D item);
/* Retrieves an item. */

D get(K key) throws NotFoundException;
/* Updates an item. */

void put(K key, D item) throws NotFoundException;
/* Delete an item. */

void delete(K key) throws NotFoundException;
}

Using Dojo Atom directly:
<script type="text/javascript">
dojo.require("dojox.atom.io.model");
dojo.require("dojox.atom.io.Connection");

//This function performs some basic dojo initialization
function initSimpleAtom () {

var conn = new dojox.atom.io.Connection();
conn.getFeed("/ShoppingCart/Cart",

function(feed){ ...},function(err){...});
}

dojo.addOnLoad(initSimpleAtom);
</script>

Transformed into Dojo
Atom

Service definition in Composite :
<component name=“ShoppingCart">

<implementation.java
class="services.ShoppingCartImpl”/>

<service name="Cart">
<t:binding.atom
uri=“ShoppingCart/Cart”/>

</service>
</component>

Reference definition in Composite:
<reference name=“shoppingCart“
target=“ShoppingCart/Cart">
<t:binding.atom/>

</reference>
ShoppingCart

The code above depicts a more complete picture of how the shoppingCart reference can
be wired through Atom binding to server side services using SCA Atom services with Dojo.
You have starting in the left corner, a composite file that has a reference named
shoppingCart defined with a Atom binding. This reference targets an existing service
called Cart. That service is defined to the top right in a composite file with a component
name of ShoppingCart. This component contains the service named Cart that is defined
with a Atom binding. This component defines its Java implementation to be
ShoppingCartImpl.java. Notice on the bottom right the ShoppingCartImpl.java file that
contains REST data collection methods such as getAll(), query(), post(), get(), put(), and
delete(). Now lastly, you will notice the on the lower left side the using Dojo Atom directly
code. You will first have to define the proper Dojo requires. Then using the proper Dojo
code you can get your feed utilizing the get() method that was defined in
ShoppingCartImpl.java.

WASV7SCA101_Web20_ATOM.ppt Page 9 of 17
9

 -

IBM Software Group

10

Web 2.0 support ATOM © 2009 IBM Corporation

Programming model – Referencing feeds within Java

REST Data Collection Interface:
@Remotable
public interface Collection<K, D> {
/* Get the whole collection. */

Entry<K, D>[] getAll();
/* Returns a collection */

Entry<K, D>[] query(String queryString);
/* Creates a new item. */

K post(K key, D item);
/* Retrieves an item. */

D get(K key) throws NotFoundException;
/* Updates an item. */

void put(K key, D item) throws NotFoundException;
/* Delete an item. */

void delete(K key) throws NotFoundException;
}

Referencing feed within Java file:
@Reference

public Cart shoppingCart;

public Item get(String id) {
if (shoppingCart.get(id) != null)
return shoppingCart.get(id);

}

Transformed into Dojo
Atom

Service definition in composite :
<component name=“ShoppingCart">

<implementation.java
class="services.ShoppingCartImpl”/>

<service name="Cart">
<t:binding.atom
uri=“ShoppingCart/Cart”/>

</service>
</component>

Reference definition in composite:
<reference name=“shoppingCart“
target=“ShoppingCart/Cart">
<t:binding.atom/>

</reference>
ShoppingCart

The code above depicts a more complete picture of how the shoppingCart reference can
be wired through Atom binding to server side services using Java. You have starting in the
left corner, a composite file that has a reference named shoppingCart defined with a Atom
binding. This reference targets an existing service called Cart. That service is defined to
the top right in a composite file with a component name of ShoppingCart. This component
contains the service named Cart that is defined with a Atom binding. This component
defines its Java implementation to be ShoppingCartImpl.java. Notice on the bottom right
the ShoppingCartImpl.java file that contains REST data collection methods such as
getAll(), query(), post(), get(), put(), and delete(). Now lastly, you will notice the on the
lower left side referencing feeds within Java code. You will introduce SCA annotations to
define the shoppingCart reference and easily now call the get() method that was defined in
ShoppingCartImpl.java.

WASV7SCA101_Web20_ATOM.ppt Page 10 of 17
10

 -

IBM Software Group

11

Web 2.0 support ATOM © 2009 IBM Corporation

Summary and referencesSummary and references

Section

Next is summary of what you have learned and some references.

WASV7SCA101_Web20_ATOM.ppt Page 11 of 17

 -

IBM Software Group

12

Web 2.0 support ATOM © 2009 IBM Corporation

Summary

� The Feature Pack for SCA allows services to
become available as data feeds through the Atom
Binding and simplifies consuming and aggregating
external feeds

The Feature Pack for SCA allows services to become available as data feeds through the
Atom Binding and simplifies consuming and aggregating external feeds.

WASV7SCA101_Web20_ATOM.ppt Page 12 of 17

 -

IBM Software Group

13

Web 2.0 support ATOM © 2009 IBM Corporation

References
� JSON: http://www.json.org

� Dojo Toolkit: http://dojotoolkit.org

� OpenAjax Alliance: http://openajax.org

� Ajax Technical library:
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=Mastering+Ajax

� IBM education assistant: Feature pack for Web 2.0
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpweb20/plugin_coverpage.html

� The WebSphere
®

Application Server Feature Pack for Web 2.0 service page:
http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/web20/

� WebSphere Application Server Feature Pack for SCA service page: http://www­
01.ibm.com/software/webservers/appserv/was/featurepacks/sca/

� Apache Tuscany: http://tuscany.apache.org/
� Notice this presentation contains information from Apache Tuscany. You can find the license

information here: http://www.apache.org/licenses/

This article talks about authorization policy:
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tsec_authsoa_policy.html

Above are some useful references.

WASV7SCA101_Web20_ATOM.ppt Page 13 of 17

 -

IBM WebSphere Portal 2004-02-14

IBM Software Group

14

Web 2.0 support ATOM © 2009 IBM Corporation

Web 2.0 vulnerability testing
� Explicit Security vulnerability testing is critical when

working with JavaScript/Web2.0

� Rational® AppScan® (www.watchfire.com) is the industry-
leading security vulnerability scanning tool for Ajax

Outside-in security testing should be part of your quality assurance plan, watchfire.com is
a security vulnerability testing tool.

WASV7SCA101_Web20_ATOM.ppt Page 14 of 17
Portal Foundation Architecture 14

 -

IBM Software Group

15

Web 2.0 support ATOM © 2009 IBM Corporation

Dojo Toolkit support

� For help with developing Ajax application look at the
General Debugging Tools section

� The best information and help is on the www.dojotoolkit.org
site especially the forums. Look through the forums for
issues and post non-confidential issues on the forum.

� http://www.dojotoolkit.org/support
�Frequently Asked Questions
�Forums

� http://www.dojotoolkit.org/docs
�The Book of Dojo 1.0
�Dojo API Reference

�Dojo Porting Guides

Here are some useful links for Dojo Toolkit.

WASV7SCA101_Web20_ATOM.ppt Page 15 of 17

 -

IBM Software Group

16

Web 2.0 support ATOM © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASV7SCA101_Web20_ATOM.ppt

This module is also available in PDF format at: ../WASV7SCA101_Web20_ATOM.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASV7SCA101_Web20_ATOM.ppt Page 16 of 17

 -

IBM Software Group

17

Web 2.0 support ATOM © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

AppScan Rational WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, Other Countries, or both.

Java, JavaScript, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WASV7SCA101_Web20_ATOM.ppt Page 17 of 17

