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Web 2.0 support – JSON-RPC 

This presentation will cover SCA feature pack Web 2.0 support with JSON-RPC 
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HTTP protocol with JSON-RPC style access in Java 
(binding.http wireFormat.jsonrpc) 
� SCA assembler 
�enable an HTTP protocol with JSON-RPC style access to an SCA 

service 

� SCA feature pack supports JSON-RPC for use with SCA 
services by using the <binding.http> with 
<wireFormat.jsonrpc> 
�enables remote Web browser clients to easily make RPC style calls 

to server-side SCA components 

� You can use this binding without any configuration, or by 
providing a specific service URI: 
�<t:binding.http><wireFormat.jsonrpc/></t:binding.http> 

�<t:binding.http uri="http://localhost:9080/Catalog"> 
<wireFormat.jsonrpc/></t:binding.http> 

Now you will look closer at the HTTP protocol with JSON-RPC style access in Java™. As 
an SCA Assembler, you want to have the ability to enable an HTTP protocol with JSON
RPC style access to an SCA service. This will enable a consumer to use the JSON-RPC 
style protocol to access your service without rewriting your service side implementations. 
The Feature Pack for SCA supports JSON-RPC as a protocol for use with SCA services 
by using the <binding.http> with <wireFormat.jsonrpc>. This enables remote Web browser 
clients to easily make RPC style calls to server-side SCA components. 

You can use this binding without any configuration, or by providing a specific service URI. 

<t:binding.http><wireFormat.jsonrpc/></t:binding.http> 

<t:binding.http uri="http://localhost:9080/Catalog">
 
<wireFormat.jsonrpc/></t:binding.http>
 

The t: above represents the Tuscany namespace. 
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Consuming JSON-RPC services on the client 
application 
�Any JSON-RPC client can be used to access the 

SCA services which use the <binding.http> with 
<wireFormat.jsonrpc> 

�Ways to consume JSON-RPC services on the 
client application 
�Utilizing implementation.widget 

�Using SCA JSON-RPC services with Dojo 

Any JSON-RPC client can be used to access the SCA services which use the 
<binding.http> with <wireFormat.jsonrpc>. There are two ways to consume JSON-RPC 
services on the client application. One way is to use the implementation.widget which was 
described already. The other way is to use SCA JSON-RPC services with Dojo. The next 
few slides will show you in more detail the two ways to consume JSON-RPC services. 
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Utilizing implementation.widget for JSON-RPC 

�Widget Implementation (implementation.widget), 
extends the SCA programming model to HTML or 
Web 2.0 client applications 
�For JSON-RPC allows you to model your HTML or Web 

2.0 as an SCA component 

�Implementation artifact is an HTML resource where you 
can define a JSON-RPC reference, that can be wired to 
server side services 

As mentioned earlier the Widget Implementation, implementation.widget, extends the SCA 
programming model to HTML or Web 2.0 client applications. Using this for JSON-RPC 
allows you to model your HTML or Web 2.0 as an SCA component. The implementation 
artifact is an HTML resource where you can define a JSON-RPC reference, that can be 
wired to server side services. 

WASV7SCA101_Web20_JSON.ppt Page 4 of 17 



  

  

   – -   

    
  

 
  

  

  

   

 

  
 

 

             
         

             
                 

              
               

          

IBM Software Group 

5 

Web 2.0 support JSON RPC © 2009 IBM Corporation 

JSON-RPC style access in widget 
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" 

xmlns:t="http://tuscany.apache.org/xmlns/sca/1.0" 
targetNamespace="http://store" name="store"> 

<component name="store"> 

<t:implementation.widget location="contents/store.html"/> 

<reference name="catalog" target=“MyCatalog/Catalog"> 

<t:binding.http><wireFormat.jsonrpc/></t:binding.http> 

</reference> 

</component> ..... 

</composite> Store composite 

catalog 
reference 

store 

component 

The code above shows a sample composite file. The component store contains the 
implementation.widget. The implementation.widget component type allows you to model 
your HTML as an SCA component. The implementation artifact is an HTML resource, and 
above you can see how you can then define SCA References that can be wired to server 
side services. A catalog reference is defined for the store component which contains an 
HTTP binding with a wire format of JSON RPC. This catalog reference can be wired 
through HTTP binding with wire format JSON-RPC to server side services. 
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Programming model – JSON-RPC, using SCA 
enhanced JavaScript 

6 

FruitsCatalogImpl.java: 
package services; 

@Remotable 
public interface Catalog { 

Item[] get(); 
} 

Using SCA enhanced JavaScript: 
<script language="JavaScript"> 

//@Reference 
var catalog = new 

Reference("catalog"); 
catalog.get(); 

</script> 

Transformed into Dojo 
JSON_RPC 

MyCatalog 

Service definition in composite: 
<component name=“MyCatalog"> 
<implementation.java 

class="services.FruitsCatalogImpl”/> 
<service name="Catalog"> 

<t:binding.http uri=“http://localhost:9080/Catalog/”> 
<wireFormat.jsonrpc/></t:binding.http> 

</service> 
</component> 

Reference definition in composite: 
<t:implementation.widget location="contents/store.html"/> 
<reference name="catalog“ target=“MyCatalog/Catalog"> 

<t:binding.http><wireFormat.jsonrpc/></t:binding.http> 
</reference> 

The code above depicts a more complete picture of how the catalog reference can be 
wired through an HTTP binding with wire format JSON-RPC to server side services using 
implementation.widget. You have starting in the left corner, a composite file that has a 
component that uses the implementation widget. A reference named catalog is then 
defined using an HTTP binding with wire format JSON-RPC. This reference targets an 
existing service called Catalog. That service is defined to the top right in a composite file 
with a component name of MyCatalog. This component contains the service named 
Catalog that is defined with an HTTP binding with wire format JSON-RPC. This 
component defines its Java implementation to be FruitsCatalogImpl.java. Notice on the 
bottom right the FruitsCatalogImpl.java file contains a get() method. Now lastly, you will 
notice the SCA enhanced JavaScript code. Since widget implementation was used, you 
can now introduce SCA annotations to the JavaScript code. You can introduce the catalog 
reference and easily now call the get() method that was defined in FruitsCatalogImpl.java. 
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Using SCA JSON-RPC services with Dojo 

� JSON-RPC services provide built-in support for Dojo's 
Remote Procedure Calls (RPC). 

� The SCA services which use <binding.http> with 
<wireFormat.jsonrpc> will by default support the SMD 
protocol 

� Using SCA services with Dojo: 
� var myService = new dojo.rpc.JsonService("myService?smd"); 

�Showing the available methods: 
� {..."methods":[{"name":"get","parameters":[{"name":"param0","type":"STRING"}]}]} 

�Services can then be invoked using the Dojo client library 
� myService.get(args); 

Dojo provides a basic RPC client class that has been extended to provide access to 
JSON-RPC services. It was designed so that it is easy to implement custom RPC 
services. Dojo's RPC clients simplify this process by taking a simple definition of the 
remote methods and application needs and generating client side functions to call these 
methods. The definition file, called a Simple Method Description (SMD) file, is a simple 
JSON string that defines a URL to process the RPC requests. It also processes any 
methods available at that URL, and the parameters those methods take. The Feature 
Pack for SCA provides built-in support for Dojo’s RPC. It generates the SMD file. You then 
just have to initialize an RPC client object and then all of these remote methods are 
available for you to use as normal. 

The SCA services which use <binding.http> with <wireFormat.jsonrpc> will by default 
support the SMD protocol. SMD is similar to ?wsdl for Web services, entering a service 
endpoint appended with ?smd will return a SMD descriptor for the service. 

Using SCA services with Dojo can therefore be as simple as: 

var myService = new dojo.rpc.JsonService("myService?smd"); 

The methods available can then be easily shown (for instance the get() method) and then 
the services can then be invoked using the Dojo client library: myService.get(args); 
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JSON-RPC style access 

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" 
xmlns:t="http://tuscany.apache.org/xmlns/sca/1.0" 
targetNamespace="http://store" name="store"> 

<component name="store"> 

<reference name="catalog" target=“MyCatalog/Catalog"> 

<t:binding.http><wireFormat.jsonrpc/></t:binding.http> 

</reference> 

</component> ..... 

</composite> Store composite 

catalog 
reference 

store 

component 

The above sample composite shows a component named store that has a reference 
named catalog. This reference has an HTTP binding with wire format JSON-RPC defined. 
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Programming model – JSON RPC, using Dojo JSON
RPC directly 

9 

Using Dojo JSON-RPC directly: 
<script type="text/javascript"> 

dojo.require("dojo.parser"); 
dojo.require("dojo.rpc.JsonService"); 

</script> 
<script type="text/javascript"> 

var catalogService = new 
dojo.rpc.JsonService("/Catalog?smd"); 

catalogService.get(); 
</script> 

MyCatalog 
Reference definition in Composite: 
<reference name="catalog“ target=“MyCatalog/Catalog"> 

<t:binding.http><wireFormat.jsonrpc/></t:binding.http> 
</reference> 

FruitsCatalogImpl.java: 
package services; 

@Remotable 
public interface Catalog { 

Item[] get(); 
} 

Service definition in Composite: 
<component name=“MyCatalog"> 

<implementation.java 
class="services.FruitsCatalogImpl”/> 

<service name="Catalog"> 
<t:binding.http 

uri=“http://localhost:9080/Catalog/”> 
<wireFormat.jsonrpc/></t:binding.http> 

</service> 
</component> 

The code above depicts a more complete picture of how the catalog reference can be 
wired through an HTTP binding with wire format JSON-RPC to server side services using 
SCA JSON-RPC services with Dojo. You have starting in the left corner, a composite file 
that has a reference named catalog defined with an HTTP binding with wire format JSON
RPC. This reference targets an existing service called Catalog. That service is defined to 
the top right in a composite file with a component name of MyCatalog. This component 
contains the service named Catalog that is defined with an HTTP binding with wire format 
JSON-RPC. This component defines its Java implementation to be FruitsCatalogImpl.java. 
Notice on the bottom right the FruitsCatalogImpl.java file contains a get() method. Now 
lastly, you will notice the on the lower left side the using Dojo JSON-RPC directly code. 
You will first have to define the proper Dojo requires. Then you can define your catalog 
service using SCA services with Dojo by entering a service endpoint appended with ?smd 
to return a SMD descriptor for the service. You can now call the get() method that was 
defined in FruitsCatalogImpl.java. 
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JSON-RPC services – JSON data binding 

� In/Out parameters are passed in JSON format 
– { string : value } 

– { "method" : "get" } 

– { "result" : "12345" } 

� JSON data binding is used to transform JSON input 
arguments into Java types, and to transform Java 
results into JSON 

Now that you did the HTTP binding with wire format JSON-RPC you can use JSON 
formats. The parameters are passed in JSON format name/value pairs. JSON data 
binding is used to transform JSON input arguments into Java types, and to transform Java 
results into JSON. 
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Summary and referencesSummary and references 

Section 

Next is summary of what you have learned and some references. 
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Summary 

�SCA feature pack supports JSON-RPC as a 
protocol for use with SCA services 
�using the <binding.http> with <wireFormat.jsonrpc> 

�enables remote Web browser clients to easily make RPC 
style calls to server-side SCA components 

The Feature Pack for SCA supports JSON-RPC as a protocol for use with SCA services 
by using the <binding.http> with <wireFormat.jsonrpc>. This enables remote Web browser 
clients to easily make RPC style calls to server-side SCA components. 
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References 
� JSON: http://www.json.org 

� Dojo Toolkit: http://dojotoolkit.org 

� OpenAjax Alliance: http://openajax.org 

� Ajax Technical library: 
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=Mastering+Ajax 

� IBM education assistant: Feature pack for Web 2.0 
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpweb20/plugin_coverpage.html 

� The WebSphere
® 

Application Server Feature Pack for Web 2.0 service page: 

http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/web20/ 

� WebSphere Application Server Feature Pack for SCA service page: 

http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca/ 

� Apache Tuscany: http://tuscany.apache.org/ 
� Notice this presentation contains information from Apache Tuscany. You can find the license 

information here: http://www.apache.org/licenses/ 

� This article talks about authorization policy: 
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tsec_authsoa_policy.html 

Above are some useful references. 
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Web 2.0 vulnerability testing 
� Explicit Security vulnerability testing is critical when 

working with JavaScript/Web2.0 

� Rational® AppScan® (www.watchfire.com) is the industry-
leading security vulnerability scanning tool for Ajax 

Outside-in security testing should be part of your quality assurance plan, watchfire.com is 
a security vulnerability testing tool. 
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Dojo Toolkit support 

� For help with developing Ajax application look at the 
General Debugging Tools section 

� The best information and help is on the www.dojotoolkit.org 
site especially the forums. Look through the forums for 
issues and post non-confidential issues on the forum. 

� http://www.dojotoolkit.org/support 
�Frequently Asked Questions 
�Forums 

� http://www.dojotoolkit.org/docs 
�The Book of Dojo 1.0 
�Dojo API Reference 

�Dojo Porting Guides 

Here are some useful links for Dojo Toolkit. 
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Feedback 

Your feedback is valuable 
You can help improve the quality of IBM Education Assistant content to better 

meet your needs by providing feedback. 

� Did you find this module useful? 

� Did it help you solve a problem or answer a question? 

� Do you have suggestions for improvements? 

Click to send e-mail feedback: 

mailto:iea@us.ibm.com?subject=Feedback_about_WASV7SCA101_Web20_JSON.ppt 

This module is also available in PDF format at: ../WASV7SCA101_Web20_JSON.pdf 

You can help improve the quality of IBM Education Assistant content by providing 
feedback. 
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IBM Director of Licensing 
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North Castle Drive 
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