

®

IBM Software Group

© 2009 IBM Corporation

Updated November 23, 2009

IBM WebSphere Application Server V7.0 Feature
Pack for Service Component Architecture V1.0.1

Web 2.0 support - Overview

This presentation will talk about the overview of the Web 2.0 features that are part of the
IBM WebSphere® Application Server Feature Pack for Service Component Architecture
(SCA).

WASV7SCA101_Web20_overview.ppt Page 1 of 34

 -

IBM Software Group

2

Web 2.0 support Overview © 2009 IBM Corporation

Web 2.0 conceptsWeb 2.0 concepts

Section

This presentation will start with a few slides on the concepts of Web 2.0. Note that you can
reference the appendix for more Web 2.0 definitions

WASV7SCA101_Web20_overview.ppt Page 2 of 34

 -

IBM Software Group

3

Web 2.0 support Overview © 2009 IBM Corporation

What is Web 2.0?

Simple to use Simple to access

Ajax
• Highly Interactive
• Browser invoked services

JSON / XML / Atom
• Information exchange
• JavaScript Friendly

REST
• Easily invoked
• HTTP-Centric Patterns

First, what is Web 2.0?

You are in an interesting time right now in development for the Web. For the first time in
several years you have a new set of patterns that are letting you look at Web development
in a new and different way. Rather than viewing the Web as a net of entire pages, where
web-based applications generate a unique page at a time, you can now take a
fundamentally different view of the web. You can now view the Web as a set of services
that can be asynchronously invoked, merged together with other services, and rewoven
into new, dynamic combinations. In addition, you are seeing an abundance of community
software such as blogs, wikis, spaces, forums, and many others that are shaping the way
users participate in the development life cycle. Agile development using techniques
learned from the open source is also influencing the way software is built. As such an
umbrella of patterns, technologies, and approaches as a whole has been coined Web 2.0,
and it's a significantly different approach to the web.

Web 2.0 is a trend in the use of World Wide Web technology and Web design that aims to
facilitate creativity, information sharing, and, most notably, collaboration among users.
These concepts have led to the development and evolution of web-based communities
and hosted services, such as social-networking sites, wikis, and blogs. If Web 1.0 was
about connecting computers, Web 2.0 is about connecting people and encouraging
collaboration in ways not possible before.

WASV7SCA101_Web20_overview.ppt Page 3 of 34

 -

IBM Software Group

4

Web 2.0 support Overview © 2009 IBM Corporation

Web 2.0 technologies

�Ajax
�Asynchronous JavaScript and XML

� JSON
�JavaScript Object Notation

�XML
�eXtensible Markup language

�ATOM

�REST
�Representational state transfer

Web 2.0 technologies include Asynchronous JavaScript and XML (Ajax), JavaScript
Object Notation (JSON), eXtensible Markup language (XML), Atom, and Representational
state transfer (REST). The primary instigator of this new way of looking at the Web is a set
of technologies commonly referred to as Ajax (Asynchronous JavaScript and XML). It's a
way of building Web pages that, rather than mixing content and presentation together,
separates the two. It separates the two into a basic page that contains the presentation
(lists, trees, and so on.). In addition, a set of XML or JSON that are asynchronously
fetched using a JavaScript Object called the XML HTTP request object. However,
although X in Ajax represents XML, fetching XML is not required. Since Ajax architectures
started using XML, it kept the name, but any content, including HTML, JavaScript, XML, or
anything TEXT can be fetched asynchronously. It can also be used to populate the
presentation based upon the actions of your of the page.

WASV7SCA101_Web20_overview.ppt Page 4 of 34

 -

IBM Software Group

5

Web 2.0 support Overview © 2009 IBM Corporation

What is JSON?

� JSON (JavaScript Object Notation), allows for rapid
exchange of JavaScript objects, but also in a simple,
human-readable format

� JSON consumes a little less bandwidth than XML and
works well with all browsers

� JSON is built up from a collection of name-value pairs and
ordered lists of values

{
"customer" : {

"name" : "Jane Doe",
"company" : "Acme Enterprises”

}
}

JSON is a lightweight computer data interchange format. It is a text-based, human-
readable format for representing simple data structures and associative arrays (called
objects). JSON Consumes a little less bandwidth than XML and works well with all
browsers. JSON is built up from a collection of name-value pairs and ordered lists of
values.

XML can be cumbersome in JavaScript to navigate so you move towards using JSON as
a structured format. Unlike XML, which a browser has to parse as part of the DOM
(Document Object Model), A JSON object becomes part of your code using eval. The
JSON format is often used for transmitting structured data over a network connection in a
process called serialization. Its main application is in Ajax Web application programming,
where it serves as an alternative to the traditional use of the XML format. JSON is a
simple, common representation of data that can be used for communication between
servers and browser clients, communication between peers, and language independent
data interchange.

WASV7SCA101_Web20_overview.ppt Page 5 of 34

 -

IBM Software Group

6

Web 2.0 support Overview © 2009 IBM Corporation

What is JSON-RPC

�A remote procedure call protocol encoded in JSON

�In JSON-RPC method invocation is made using JSON
objects

�The generated response is a JSON object

�Is the Web 2.0 version of a Remote Procedure Call (RPC)

�Does not require complicated tools products

�Easy to program to service end points
�Many Ajax Toolkits have native automatic support for JSON-RPC
� Dojo has a JSON-RPC API

�Simple extension of normal programming constructs.

�Together with RPC Adapter and other technologies can
invoke Web service/EJB/SCA

Remote procedure call (RPC) is a technology that allows a computer program to cause a
subroutine or procedure to start in another address space. The address space is
commonly on another computer on a shared network without the programmer explicitly
coding the details for this remote interaction. JSON-RPC is a remote procedure call
protocol encoded in JSON. It is a very simple protocol (and very similar to XML-RPC),
defining only a handful of data types and commands. In contrast to XML-RPC or SOAP, it
allows for bidirectional communication between the service and the client, treating each
more like peers and allowing peers to call one another or send notifications to one
another. It also allows multiple calls to be sent to a peer which can be answered out of
order. In JSON-RPC method, invocation is made using JSON objects. The generated
response is a JSON object and the registered Java™ Bean can be accessed through
Dojo's JSON-RPC API. JSON-RPC does not require complicated tools products, is easy
to program to service end points, is a simple extension of normal programming constructs
and can Invoke Web service/EJB/SCA.

WASV7SCA101_Web20_overview.ppt Page 6 of 34

 -

IBM Software Group

7

Web 2.0 support Overview © 2009 IBM Corporation

Atom
�A Web feed is a way to share content

�The name Atom applies to a pair of related standards
�The Atom Syndication Format is an XML language used for Web feeds
�Atom Publishing Protocol (APP) is a simple HTTP-based protocol for creating

and updating Web resources
� APP allows for retrieving, creation, updating, and deleting of data through syndication

�Allows for support for podcasting, updating, and extension

�Human readable and is easy to understand and parse

�Fully open, simple, transparent approach – you do not need to make up
new REST apis for every application

�Takes full advantage of the Web’s natural strengths: HTTP verbs, Web
caching, XML

� Flexible user interface options and flexible posting options

A Web feed is a data format used for providing users with frequently updated content.
Content distributors syndicate a Web feed, thereby allowing users to subscribe to it. A
Web feed is also sometimes referred to as a syndicated feed. Atom and RSS are two such
Web feed formats. Web feed formats are used to publish frequently updated content such
as blog entries, news headlines, and podcasts. The name Atom applies to a pair of
related standards. The Atom Syndication Format is an XML language used for Web feeds,
while the Atom Publishing Protocol (short AtomPub or APP) is a simple HTTP-based
protocol for creating and updating Web resources. A feed contains entries, which can be
headlines, full-text articles, excerpts, summaries, or links to content on a Web site, along
with various metadata.

The Atom format was developed as an alternative to RSS. Atom Takes full advantage of
the web’s natural strengths: HTTP verbs, Web caching, and XML. Atom is supported by:
Bloglines, Google (Blogger, News), Typepad, LiveJournal, NewsGator, FeedDemon,
O’Reilly Developer Weblogs, Drupal, Flickr, Apple, Microsoft® and of course IBM. Atom
allows for better support for podcasting, updating, and extension than RSS provided. Atom
is also human readable and is easy to understand and parse. In addition, Atom, through
the use of the Atom Publishing Protocol (APP) pushes syndication to the next level as you
can perform updates to syndication.

Contrary to popular use-cases, a feed is not always “the 15 most recent news articles”.
Atom can represent other resources and collections. You can include additional
namespaces in an Atom feed. This means that you can represent all kinds of things such
as Orders, Prospects, Documents, Blog posts, Calendar entries, Mail messages, Vacation
schedules, Conference registrations, Expense approvals, and Activities.

WASV7SCA101_Web20_overview.ppt Page 7 of 34

 -

IBM Software Group

8

Web 2.0 support Overview © 2009 IBM Corporation

Web 2.0 support in SCAWeb 2.0 support in SCA

Section

The next section will cover the overview of Web 2.0 support in SCA.

WASV7SCA101_Web20_overview.ppt Page 8 of 34

 -

IBM Software Group

9

Web 2.0 support Overview © 2009 IBM Corporation
9

High level user story

�Service developer,
�use SCA and compose and assemble a service from new

and existing services by way of Web 2.0 technology, such
as Atom and JSON-RPC

�SCA developer
�use the SCA programming model in HTML by defining

references and properties

The Feature Pack for SCA covers three main high level user stories.

As a Service Developer, you want to use SCA and compose and assemble a service from
new and existing services which are available by way of Web 2.0 technology, such as
Atom and JSON-RPC. You want to make the newly assembled service available over
Web 2.0 technology. This is so that you can create an open, implementation neutral,
service oriented description of the newly created service assembly and composition. You
can create this such that services that you provide or refer to reside on Web 2.0
technology. As an SCA developer you want to use the SCA programming model in HTML
by defining references and properties.

WASV7SCA101_Web20_overview.ppt Page 9 of 34

 -

IBM Software Group

10

Web 2.0 support Overview © 2009 IBM Corporation
10

Key concepts

�Deliver Web 2.0 connectivity for providing
and referencing to services using SCA
�Provide Web 2.0 support for SCA by enabling
� Atom

� JSON-RPC access protocol to SCA services

�Enable SCA programming model in HTML and
JavaScript
� So HTML can access SCA services through SCA references using

Web 2.0 connectivity, that is Atom and JSON-RPC

The Feature Pack for SCA will provide Web 2.0 support for SCA by enabling Atom and
JSON-RPC access protocol to SCA services. It will also enable the SCA programming
model in HTML and JavaScript so that that HTML can access SCA services through SCA
references using Web 2.0 connectivity such as Atom and JSON-RPC.

WASV7SCA101_Web20_overview.ppt Page 10 of 34

 -

IBM Software Group

11

Web 2.0 support Overview © 2009 IBM Corporation
11

Behind the scenes

�SCA feature pack will use Web 2.0 feature pack
shipped libraries, including vendor jars, and
programming model to support Web 2.0
connectivity:
� Atom support is provided by Abdera libraries

� JSON-RPC to use JSON4J

� HTML and JavaScript to use Dojo client library
– Note: Dojo is not provided with the Feature Pack for SCA

The Feature Pack for SCA will use the Feature Pack for Web 2.0 shipped libraries such as
JSON4J and the blue-washed version of Dojo. It will also include vendor jars, and a
programming model to support Web 2.0 connectivity. Specifically Atom support is provided
by Abdera libraries, JSON-RPC will use JSON4J, and HTML and JavaScript will use the
Dojo client library. Dojo is not provided with the Feature Pack for SCA, but you can easily
get the blue-washed version of Dojo through the Feature Pack for Web 2.0.

WASV7SCA101_Web20_overview.ppt Page 11 of 34

 -

IBM Software Group

12

Web 2.0 support Overview © 2009 IBM Corporation

HTML as SCA implementation

� The Widget Implementation
(implementation.widget) extends the SCA
programming model to HTML applications

�Use implementation.widget to model your Web 2.0
component.
�This component type allows you to model your HTML as

an SCA component

�The implementation artifact is an HTML resource where
you can define SCA References that can be wired to
server side services

The Feature Pack for SCA includes support for the Widget Implementation,
implementation.widget, which extends the SCA programming model to HTML applications.
implementation.widget allows you to model your HTML as an SCA component. The
implementation artifact is an HTML resource where you can define SCA References that
can be wired to server side services. Currently, you can define references to remote
services using and Atom binding and HTTP binding with wire format JSON-RPC.

WASV7SCA101_Web20_overview.ppt Page 12 of 34

 -

IBM Software Group

13

Web 2.0 support Overview © 2009 IBM Corporation

HTML as SCA implementation (implementation.widget)

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:t="http://tuscany.apache.org/xmlns/sca/1.0"
targetNamespace="http://store" name="store">

<component name="store">

<t:implementation.widget location="contents/store.html"/>

<reference name="catalog" target=“MyCatalog/Catalog">

<t:binding.http><wireFormat.jsonrpc/></t:binding.http>

</reference>

<reference name="shoppingCart" target="ShoppingCart/Cart">

<t:binding.atom/>

</reference>

</component>

</composite>

Store composite

catalog
reference

store

component

shoppingCart

reference

The code above shows a sample composite file. The component store contains the
implementation.widget. The implementation.widget component type allows you to model
your HTML as an SCA component. The implementation artifact is an HTML resource, and
above you can see how you can then define SCA References that can be wired to server
side services. There are two references for the store component. They are catalog which
is an HTTP binding with a wire format of JSON RPC, and shoppingCart which is a Atom
binding.

WASV7SCA101_Web20_overview.ppt Page 13 of 34

 -

IBM Software Group

14

Web 2.0 support Overview © 2009 IBM Corporation
14

Programming model – widget (1)

� Web client application is defined as an SCA component
utilizing widgets

� JavaScript is generated to inject service references to SCA
references

� The client application will need to include the generated
JavaScript

� The name of the generated JavaScript is the same as the
HTML resource being specified as the implementation
artifact
� Following the example earlier can be:

� <script type="text/javascript" src="store.js"></script>

When your Web client application is defined as an SCA component utilizing widgets, a
JavaScript file is generated which can be included within an HTML document. The
JavaScript is to properly inject service references to SCA references defined on the same
HTML document. The client application will need to include the generated JavaScript that
will contain the necessary client proxy used to access the server side services. The name
of the generated JavaScript is the same as the HTML resource being specified as the
implementation artifact.

Following the example earlier where the component name was store you just add
to your HTML resource the generated JavaScript file:

<script type="text/javascript" src="store.js"></script>

The JavaScript is transformed into Dojo Toolkit calls, that are binding specific. Including
the generated JavaScript will initialize the proxys for the SCA services which can then be
injected into SCA references to make requests to the server-side components.

WASV7SCA101_Web20_overview.ppt Page 14 of 34

 -

IBM Software Group

15

Web 2.0 support Overview © 2009 IBM Corporation

Programming model – widget (2)

� The widget implementation introduces SCA annotations to
JavaScript code using the syntax below:

//@Reference

var catalog = new Reference("catalog");

//@Reference

var shoppingCart = new Reference("shoppingCart");

� If the catalog had a “get” method the script in the HTML
page can now invoke the operations with:

catalog.get(args);

Using the widget implementation now introduces SCA annotations to the JavaScript code.
Following the earlier example you can define the references

//@Reference

var catalog = new Reference("catalog");

//@Reference

var shoppingCart = new Reference("shoppingCart");

These references will get properly introspected by the implementation.widget and wired to
the proper server side services.

If the catalog had a get() method the script in the HTML page can now easily invoke the
get method by calling catalog.get(args);

WASV7SCA101_Web20_overview.ppt Page 15 of 34

 -

IBM Software Group

16

Web 2.0 support Overview © 2009 IBM Corporation

Summary and referencesSummary and references

Section

Next is summary of what you have learned and some references.

WASV7SCA101_Web20_overview.ppt Page 16 of 34

 -

IBM Software Group

17

Web 2.0 support Overview © 2009 IBM Corporation

Summary

�SCA feature pack includes Web 2.0
connectivity for providing and referencing to
services using SCA
�Provides Web 2.0 support for SCA by enabling
� Atom

� JSON-RPC access protocol to SCA services

�Enables SCA programming model to HTML and
JavaScript
� So HTML can access services through SCA references using Web

2.0 connectivity, that is Atom and JSON-RPC

The Feature Pack for SCA includes Web 2.0 connectivity for providing and referencing to
services using SCA. It provides Web 2.0 support for SCA by enabling Atom and the
JSON-RPC access protocol to SCA services. The feature pack enables SCA
programming model to HTML and JavaScript so HTML can access services through SCA
references using Web 2.0 connectivity, that is Atom and JSON-RPC.

WASV7SCA101_Web20_overview.ppt Page 17 of 34

 -

IBM Software Group

18

Web 2.0 support Overview © 2009 IBM Corporation

References
� JSON: http://www.json.org

� Dojo Toolkit: http://dojotoolkit.org

� OpenAjax Alliance: http://openajax.org

� Ajax Technical library:
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=Mastering+Ajax

� IBM education assistant: Feature pack for Web 2.0
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpweb20/plugin_coverpage.html

� The WebSphere Application Server Feature Pack for Web 2.0 service page: http://www
01.ibm.com/software/webservers/appserv/was/featurepacks/web20/

� WebSphere Application Server Feature Pack for SCA service page: http://www
01.ibm.com/software/webservers/appserv/was/featurepacks/sca/

� Apache Tuscany: http://tuscany.apache.org/
� Notice this presentation contains information from Apache Tuscany. You can find the license

information here: http://www.apache.org/licenses/

� This article talks about authorization policy:
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.soafep.multiplatform.doc/info/ae/ae/tsec_authsoa_policy.html

Above are some useful references.

WASV7SCA101_Web20_overview.ppt Page 18 of 34

 -

IBM Software Group

19

Web 2.0 support Overview © 2009 IBM Corporation

19

Web 2.0 vulnerability testing
� Explicit Security vulnerability testing is critical when

working with JavaScript/Web2.0

� Rational® AppScan® (www.watchfire.com) is the industry-
leading security vulnerability scanning tool for Ajax

Outside-in security testing should be part of your quality assurance plan, watchfire.com is
a security vulnerability testing tool.

WASV7SCA101_Web20_overview.ppt Page 19 of 34

 -

IBM Software Group

20

Web 2.0 support Overview © 2009 IBM Corporation

Dojo toolkit support

� For help with developing Ajax application look at the
General Debugging Tools section

� The best information and help is on the www.dojotoolkit.org
site especially the forums. Look through the forums for
issues and post non-confidential issues on the forum.

� http://www.dojotoolkit.org/support
�Frequently Asked Questions
�Forums

� http://www.dojotoolkit.org/docs
�The Book of Dojo 1.0
�Dojo API Reference

�Dojo Porting Guides

Here are some useful links for Dojo Toolkit.

WASV7SCA101_Web20_overview.ppt Page 20 of 34

 -

IBM Software Group

21

Web 2.0 support Overview © 2009 IBM Corporation

AppendixAppendix

Section

Now that you have had a quick overview of Web 2.0 and Web 2.0 with SCA, the next
couple of slides are more concepts of Web 2.0"

WASV7SCA101_Web20_overview.ppt Page 21 of 34

 -

IBM Software Group

22

Web 2.0 support Overview © 2009 IBM Corporation

What is REST?

� REST is the acronym for “Representational State Transfer”
�It is the architectural model on which the World Wide Web is based

� Principles of REST
�Resource centric approach
�All relevant resources are addressable through URIs
�Uniform access through HTTP – GET, POST, PUT, DELETE
�Content type negotiation allows retrieving alternative representations

from same URI

� REST style services are easy to access from code running
in Web browsers, any other client or servers

Representational state transfer (REST) is a style of software architecture for distributed
hypermedia systems such as the World Wide Web. The terms “representational state
transfer” and “REST” were introduced in 2000 in the doctoral dissertation of Roy Fielding,
one of the principal authors of the Hypertext Transfer Protocol (HTTP) specification. The
terms have since come into widespread use in the networking community. REST strictly
refers to a collection of network architecture principles which outline how resources are
defined and addressed. The term is often used in a looser sense to describe any simple
interface which transmits domain-specific data over HTTP without an additional messaging
layer such as SOAP or session tracking by way of HTTP cookies. Systems which follow
Fielding’s REST principles are often referred to as “RESTful”.

REST is a resource centric approach and all relevant resources are addressable by way of
URIs. Uniform access by way of HTTP are through simple GET, POST, PUT, DELETE
commands. GET returns a state representation of the identified resource. POST performs
some form of application-specific update to the identified resource. PUT creates a new
resource at an identified location (URI), and DELETE destroys a resource at the identified
location (URI). Content type negotiation allows retrieving alternative representations from
same URI. REST style services are easy to access from code running in Web browsers,
any other client or servers. REST is very popular in the context of Ajax and can take full
advantage of the World Wide Web caching infrastructure. REST can serve multiple
representations of the same resource.

REST is the first key component in an implementation of a Web Oriented Architecture.
REST is a style of architecture that is best exemplified within the HTTP protocol and
enables the creation of Web services that are simple to implement, built for re-use, and
are ultra-scalable. The simplicity of REST comes from the use of the fixed protocol
(HTTP), fixed encryption model (HTTPs), and fixed identity token exchange (Basic-Auth or
standard HTTP schemes).

WASV7SCA101_Web20_overview.ppt Page 22 of 34

 -

IBM Software Group

23

Web 2.0 support Overview © 2009 IBM Corporation

RESTful SOA

� A RESTful SOA is an instance of SOA that uses concepts from the Web
as the primary service architecture

�Limiting choices to make it easier to implement a SOA

�Primarily uses REST to represent and access services

�Data is encoded as JSON or XML (including Atom)

�May use alternate approaches like JSON-RPC when appropriate

�Supports Rich User Interfaces built using Ajax

� Key aspects of building an effective RESTful SOA

�Take advantage of your existing infrastructure wherever possible

�Use well-established, ubiquitous technologies for scalability,
performance and security

�Build rich UI’s that run in any commodity browser

A RESTful Service-oriented Architecture SOA (sometimes referred to by the industry as WOA or Web
Oriented Architecture) is just one implementation of a SOA where the Web is the SOA platform. IBM’s
position has always been that SOA is an architecture and you have several ways you can build an SOA,
weather it be Web services, SCA, or EJB3 POJO’s. RESTful SOA is another implementation of the
architecture and extends the reach of your enterprise SOA putting services in the hands of the masses. The
goal is to expose resources using HTTP, using a RESTful pattern, and Web formats that are easily
consumed by the Web. You want to use your existing Web Infrastructure, which can be already hardened, to
take advantage of the Internets scalability.

The primary instigator of this new way of looking at the Web is Ajax. This set of technologies has led you to
have to take a step back and think about what this means for enterprise computing. You used to have to
consider that enterprise services either ended at the corporate firewall, or at most were exposed under strict
security to a limited set of corporate partners. You can now envision a time where some services extend all
the way out to the browser. This is leading to a consideration of a new type of architecture, the Web-Oriented
architecture. This architecture is an emerging term that was coined by Nick Gall that refers to a small set of
services protocols that are optimized for browser and other end-client interactions. The way to look at this is
to take the basic idea of services extended all the way out to the browser, and then consider the impact this
has on the notion of an SOA. WOA refers to delivering simple XML Web services delivered over HTTP using
the REST approach. REST is the foundation of a WOA. The next layer down is how you represent the
information flowing from the service using technologies like Atom feeds and JSON. Finally, Ajax (that started
the whole thing) is the way to render the information in the service to you. However, the core idea remains
that you are only considering a small set of protocols aimed at bringing information out directly to the client.

Collectively, the technologies can be used to create a radically simplified service platform. Using REST and
Atom to form the basis of the service invocation model. JSON and XML as the data interchange format. Ajax
as the model for a rich client. This platform can also be used to create an architectural "bridge" between
WOA and enterprise SOA, allowing services from the enterprise to be simplified and reach the masses by
way of the web. You can refer to this as “extending your SOA to the Web”.

SOA is an integral part of realizing the business benefit from Web 2.0. It enables businesses to unlock their
enterprise content to reach new markets, to enable collective intelligence of communities, and take
advantage of Web 2.0 technologies for collaboration.

WASV7SCA101_Web20_overview.ppt Page 23 of 34

 -

IBM Software Group

24

Web 2.0 support Overview © 2009 IBM Corporation

What is Ajax?

� Ajax is the acronym for Asynchronous JavaScript And XML

� Basic technologies involved in Ajax
�HTML or XHMTL and CSS

�JavaScript code

�DOM, the Document Object Model

�DHTML, or Dynamic HTML, updates forms dynamically

�Data interchange and manipulation using (JavaScript Object
Notation) JSON or XML or both file formats.

� XMLHttpRequest

�Enables the retrieval of data from Web resources as a
background activity

So what is Ajax? Ajax stands for Asynchronous JavaScript and XML. It is a group of inter
related Web development techniques for creating interactive Web applications. A primary
characteristic is the increased responsiveness and interactivity of Web pages achieved by
exchanging small amounts of data with the server. This is done "behind the scenes" so
that entire Web pages do not have to be reloaded each time there is a need to fetch data
from the server. This is intended to increase the Web page's interactivity, speed,
functionality and usability.

Ajax is a cross-platform technique usable on many different operating systems, computer
architectures, and Web browsers. It is a pattern for programming rich browser applications
that uses open standards and can be mixed in with classic Web user interface. The Ajax
technique uses a combination of elements. HTML or XHMTL is used to build Web forms
and identify fields for use in an application. JavaScript code is the core code running Ajax
applications and it helps facilitate communication with server applications. JavaScript is
the scripting language in which Ajax function calls are typically made. DOM, the Document
Object Model, is used (through JavaScript code) to work with both the structure of the
HTML and (in some cases) XML returned from the server. DHTML, or Dynamic HTML,
updates forms dynamically. Ajax accomplishes data interchange and manipulation using
JSON or XML or both file formats. XML is sometimes used as the format for transferring
data between the server and client; although, any format works, including preformatted
HTML, plain text, and JSON.

Ajax is asynchronous, in that extra data is requested from the server and loaded in the
background without interfering with the display and behavior of the existing page. The
XMLHttpRequest object is used to exchange data asynchronously with the Web server.
Ajax supports a rich client interaction model that is intuitive, responsive, and timely. The
interaction is comparable to desktop applications. Continuous user interaction with event
driven server processing and dynamic content refresh versus interrupted interaction with
request driven server processing followed by static page refresh.

WASV7SCA101_Web20_overview.ppt Page 24 of 34

 -

IBM Software Group

25

Web 2.0 support Overview © 2009 IBM Corporation

Dojo toolkit

� A JavaScript toolkit for developing Ajax applications with
rich user interfaces

� Key capabilities
�Works well across most modern browsers
�Small footprint, high function

� Dojo provides a lot of power and attempts to make it
digestible in three major layers: Dojo Core, Dijit, and DojoX
� Provides Rich Set of Widgets
� Web UI Framework
� Rich Event handling System
� General Purpose HTML Libraries
� Several other utilities
� Math, XML to JS parsing, etc…

� www.dojotoolkit.org

IBM has adopted the open-source Dojo toolkit as its internal standard. IBM is a key
contributor to the Dojo project, and a committed member of the Dojo Foundation. IBM
sees this as one of the most flexible of all the toolkits on the current market.

Dojo is an open source DHTML toolkit written in the JavaScript language. Dojo allows you
to easily build dynamic capabilities into Web pages. You can use the components that
Dojo provides to make your Web sites more usable, responsive, and functional. Dojo
builds on several contributing code bases. “Unified” open source DHTML toolkit written in
JavaScript, HTML and CSS. Dojo Toolkit works well across most modern browsers. Dojo
provides a lot of power and attempts to make it digestible in three major layers: Dojo Core,
Dijit, and DojoX. The Dojo DHTML toolkit provides an open-source framework that
abstracts away the complexities of JavaScript development. It builds on several
contributed code bases.

Dojo’s features include: A rich and extensible set of cross-browser, Ajax-based UI
components or widgets, referred to as dijits. A powerful event handling system which
extends the normal event handling model available in JavaScript. A simplified wrapper
around Ajax functions, Drag-and-drop functionality, Internationalization, Data format
conversion, HTML cookie handling, JSON support, and DOM manipulation to just name a
few.

WASV7SCA101_Web20_overview.ppt Page 25 of 34

 -

{ employee : {

name : {

first : John ,

last : Smith }

e mail : john.smith@example.com

}}

IBM Software Group

26

Web 2.0 support Overview © 2009 IBM Corporation

" "

" "

" " " "

" " " "

" " " "

{ "employee": {

"name": {

"first": "John",

"last": "Smith" }

"e-mail": "john.smith@example.com"

}}

JSON data type: objects

�An object in JSON is an unordered collection of key/value
pairs:
�Object declarations are enclosed by curly brackets ({,})

�The key and value are separated by a colon (:)

�The key/value pairs are separated by commas (,)

�Keys are strings, while values can be any JSON value

JSON Objects are created using the curly bracket, and employs name value pairs.
Besides simple types, JSON objects can contain other JSON Object and JSON Arrays.

WASV7SCA101_Web20_overview.ppt Page 26 of 34

 -

IBM Software Group

27

Web 2.0 support Overview © 2009 IBM Corporation

JSON4J

� JSON4J library is an implementation of JSON for
use within Java environments

� JSON4J provides a fast transform for XML->JSON
conversion

�Reasons to use JSON
�Dealing with XML at the browser has some challenges

� Must be parsed and translated to a DOM tree or complex object that can
be readily manipulated by JavaScript

� Requires additional JavaScript DOM objects to be present and often
additional JavaScript to hide the browser specific complexity

� Impacts client side performance

JSON4J library is an implementation of JSON for use within Java environments. JSON4J
provides a fast transform for XML->JSON conversion. Dealing with XML at the browser
has some challenges as it must be parsed and translated to a DOM tree or complex object
that can be readily manipulated by JavaScript. XML requires additional JavaScript DOM
objects (for example, XPathEvaluator or selectNodes) to be present and often additional
JavaScript to hide the browser specific complexity which in turn Impacts client side
performance.

WASV7SCA101_Web20_overview.ppt Page 27 of 34

 -

IBM Software Group

28

Web 2.0 support Overview © 2009 IBM Corporation

Web remoting

What is Web remoting?

�Web remoting is a pattern that provides support for
JavaScript or client side code to directly invoke
server side logic

� Implementations of this pattern in Java include:
�RPC (Remote Procedure Call) adapter (IBM)

�DWR (Direct Web remoting) - http://getahead.org/dwr

�JSON-RPC Java - http://oss.metaparadigm.com/jsonrpc/

�JSON binding

Web-remoting is a pattern that provides support for JavaScript or client side code to
directly invoke server side logic. There are a few implementations of this pattern in Java.
RPC (Remote Procedure Call) adapter is an IBM implementation for Web remoting to help
developers create command-based services quickly and easily in a manner that
complements programming styles for Ajax applications and other lightweight clients. DWR
(Direct Web remoting) allows JavaScript in a browser to interact with Java on a server and
helps you manipulate Web pages with the results. JSON-RPC-Java is a key piece of Java
Web application middleware that allows JavaScript DHTML Web applications to call
remote methods in a Java Application Server without the need for page reloading (Ajax).
JSON data binding is used to transform JSON input arguments into Java types, and to
transform Java results into JSON

WASV7SCA101_Web20_overview.ppt Page 28 of 34

 -

IBM Software Group

29

Web 2.0 support Overview © 2009 IBM Corporation

Advantages of the RPC style

�Easy to develop in machine to machine
�Simple extension of normal programming constructs
� Tools and wizards readily available for exposing existing interfaces as RPC style Web

services

�Wider range of actions on resources
�Operations on services represent any arbitrary action, whereas REST

operations are limited to create, retrieve, update, and delete operations

�RPC style works irrespective of the underlying transport
protocol
�Although the REST style can be implemented over any network

protocol, most implementations rely on the HTTP methods and status
codes for operation

RPC is an alternative to REST and has advantages as well. Tools and wizards readily
available for exposing existing interfaces as RPC style Web services. This is largely due to
its machine to machine interaction. Server programs using REST typically has to code to a
lower level HTTP API and invoke URLs. In addition, not everything can naturally be
represented RESTfully, using four verbs create, retrieve, update and delete. Some things
are better represented as a set of operations, for example, transferFunds().

WASV7SCA101_Web20_overview.ppt Page 29 of 34

 -

IBM Software Group

30

Web 2.0 support Overview © 2009 IBM Corporation

Comparison between REST and RPC styles

Arbitrary methods tied to
implementation, specified within the
HTTP message body

HTTP methods represent the
operation performed on the
resource

Generally designed as an
abstraction above the transport
layer

Designed for HTTP

HTTP messages expose underlying
implementation

HTTP messages abstracts the
underlying implementation

URI identifies endpoint to access a
service

Each URI represents a unique
resource

Function oriented

Generally uses strongly typed data

Document oriented

Supports loose typing of data

RPC REST

The table above represents some of the key differences between REST Style interactions
and RPC. RPC interactions are similar to SOAP and Web services in that there is a
description document (such as WSDL) and the payload contains information about the
operation. REST is about accessing a resources in a document oriented style and uses
the HTTP Architecture.

WASV7SCA101_Web20_overview.ppt Page 30 of 34

 -

IBM Software Group

31

Web 2.0 support Overview © 2009 IBM Corporation

A simple Atom feed
� An Atom Entry contains at least the minimum that needs to be known about a resource.

What it is called, where it is, who created it, when it was updated, and what it contains.

� An Atom Feed contains the Atom Entry documents resulting from a Query over resources

Feed

Entry

<?xml version="1.0" encoding="utf8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>BBCSport Cricket</title>
<link href="http://example.org/reilly/"/>
...

<entry>
<title>Simon Mann’s column</title>
<link href="http://example.org/reilly/3"/>
<author><name>Simon Mann</name></author>

<id>http://example.org/2004/12345679</id>
<updated>2006-04-03T12:28:02Z</updated>
<content>Andrew Flintoff experienced his toughest day so far…</content>

</entry>
...
<entry>
<title>Another Simple Title</title>
<edit href="http://example.org/reilly/1"/>
<content>More content.</content>

</entry>
</feed>

A simple Atom feed is shown above. Again, it is based off of XML. An Atom feed has two
parts; the Atom Feed and the Atom Entry. An Atom Entry contains at least the minimum
that needs to be known about a resource. The details of the resource include what it’s
called, where it is, who created it, when it was updated, and what it contains. An Atom
Feed contains the Atom Entry documents resulting from a Query over resources.

WASV7SCA101_Web20_overview.ppt Page 31 of 34

 -

IBM Software Group

32

Web 2.0 support Overview © 2009 IBM Corporation

Atom publishing protocol
�The Atom publishing protocol

uses HTTP methods to perform
create, retrieve, update, and
delete operations

�The feed itself contains all of
the necessary information:
�A URI for posting new items.
�A URI for each entry

�The protocol works irrespective
of the information published by
the Web feed

�DELETE on the entry URI Delete

�PUT an updated entry to
the entry URI.

Update

�GET on the collection's URI
to retrieve the feed.

�GET on the entry URI to
retrieve a single entry.

Read

�POST a new entry to the
collection's URI.

Create

Method Operation

The Atom Publishing protocol extends Atom using the REST principal to allow for creation,
retrieving, updating, and deleting of feeds. The feed itself contains all of the necessary
information such as a URI for posting new items and a URI for each entry. The protocol
works irrespective of the information published by the Web feed.

WASV7SCA101_Web20_overview.ppt Page 32 of 34

 -

IBM Software Group

33

Web 2.0 support Overview © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASV7SCA101_Web20_overview.ppt

This module is also available in PDF format at: ../WASV7SCA101_Web20_overview.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASV7SCA101_Web20_overview.ppt Page 33 of 34

 -

IBM Software Group

34

Web 2.0 support Overview © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

AppScan Rational WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, Other Countries, or both.

Microsoft is a registered trademark of Microsoft Corporation in the United States, other countries, or both.

Java, JavaScript, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WASV7SCA101_Web20_overview.ppt Page 34 of 34

