

®

IBM Software Group

© 2008 IBM Corporation

Updated December 12, 2008

IBM® WebSphere ® Application Server V7 Feature
Pack for Service Component Architecture

SCA Java ™ annotation and implementation
programming – Specification examples

This presentation will cover the examples from the two specifications for SCA V1.0
programming model – Java annotations and Java implementation.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 1 of 23

 –

IBM Software Group

2

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Java specifications examplesJava specifications examples

Section

This section will discuss the Java specifications with SCA examples where applicable.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 2 of 23

 –

IBM Software Group

3

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Use case: Java interface

Business
logic

Business
logic

// This is the service interface
package services.hello;

@Remotable

public interface HelloService {
String hello(String message);
}

// This is the service implementation
package services.hello;
import org.osoa.sca.annotations.*;

@Service(HelloService.class)

public class HelloServiceImpl implements
HelloService {

public String hello(String message) {
...
}}

1

2

Java implementation

HelloWorldServiceImpl.java Java interface

HelloWorldService.java

The first one is a simple Java interface use case.

Starting with a Java interface, you would then write Java implementation with its business

logic meaning create a POJO implementation/interface relationship as shown.

Note the @Service annotation to refer back to Java interface in this case service interface.

Also note the @Remotable annotation which will be discussed more in the next slide

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 3 of 23

 –

IBM Software Group

4

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Local and remotable services

� A Java service interface
may use @Remotable to
declare that a service can
be accessed remotely

� If @Remotable is not used,
the service is considered
local

package services.hello;

@Remotable

public interface HelloService {
String hello(String message);
}

A Java service contract defined by an interface or implementation class may use
@Remotable to declare that the service follows the semantics of remotable services as
defined by the SCA Assembly Specification. The above example demonstrates the use of
@Remotable annotation.

If @Remotable is not used, then the service is assumed to be local.

If an implementation class has implemented interfaces that are not decorated with an
@Remotable

annotation, the class is considered to implement a single local service whose type is
defined by the class

Note that the style of local interfaces is typically fine grained and intended for tightly
coupled interactions.

The data exchange semantic for calls to local services is by-reference . This means that
code must be written with the knowledge that changes made to parameters (other than
simple types) by either the client or the provider of the service are visible to the other.

Also note that a remote service could be running in a different process on the same
physical computer or on a different computer

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 4 of 23

 –

SCA

IBM Software Group

5

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Use case: Using WSDL (best practice)

JAXB data binding
tools

wsimport

Business
logic

Business
logic

AccountService.
wsdl

Java classes Java classes

AccountService.java

// This is the service implementation
package services.account;
import org.osoa.sca.annotations.*;

@Service(AccountService.class)

public class AccountServiceImpl
implements AccountService {

public int account(int balance) {
...
}}

Java Implementation

AccountServiceImpl.java

1

2

3

4

Here is an example of SCA feature pack best practice use case where you start from
WSDL interface for either an implementation or client.

In this scenario, you start with WSDL interface (portType) plus XSDs example
AccountService.wsdl. There after, run codegen (wsimport) and generate the Java classes
such as AccountService.java. Finally write Java implementation (AccountServiceImpl.java)
with its business logic . The Java implementation implement the generated SEI (this is the
one with @WebService) in the POJO sense) and add @Service to refer back to generated
SEI class. Finally you can expose Account Service over Web services bindings.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 5 of 23

 –

IBM Software Group

6

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Annotation scope

�SCA runtime can manage the state of a component
as specified by the @Scope annotation

�Supported scopes are:
�stateless, composite

� Implementations can include life cycle methods
�@Init

�@Destroy

@Scope(“stateless”)
pubic interface ShoppingCartService {

public void addToCart(int quantity);
}

Added to the interface
or the implementation

Component implementations can either manage their own state or allow the SCA runtime
to do so. In the latter case, SCA defines the concept of implementation scope, which
specifies a visibility and life cycle contract an implementation has with the SCA runtime.
Invocations on a service offered by a component will be dispatched by the SCA runtime to
an implementation instance according to the semantics of its implementation scope.

Scopes are specified using the @Scope annotation on the implementation class

The @Scope annotation type is used on either a service's interface definition or on a
service implementation class itself.

This annotation can be added to either the interface or implementation class definition.
The possible values for the @Scope annotation are: stateless, session, conversation,
and composite . However, SCA feature pack only supports stateless and composite
scopes.

Java-based implementation types can choose to support any of these scopes, and they
may define new scopes specific to their type.

An implementation type may allow component implementations to declare life cycle
methods that are called when an implementation is instantiated or the scope is expired.
@Init denotes the method to be called upon first use of an instance during the lifetime of
the scope. @Destroy specifies the method to be called when the scope ends. Note that
only public, no argument methods may be annotated as life cycle methods.

Note that scope impacts the threading of the programming model that is stateless=single
threaded composite=multi-threaded.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 6 of 23

 –

IBM Software Group

7

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Supported security annotations

�@DeclareRoles (Servlet 2.5 and EJB 3)

�@RunAs (Servlet 2.5 and EJB 3)
�role name used in the RunAs annotation must be defined

in the deployment descriptor.

�@DenyAll (EJB 3 only)

�@PermitAll (EJB 3 only)

�@RolesAllowed (EJB 3 only)

In Java EE 5, The security roles and policies can be defined using annotations within the
deployment descriptor. During the installation of the application, the security policies and
roles defined using annotations are merged with the security policies and roles defined
within the deployment descriptor.

The list shown shows the supported security annotations.

Note that the role name used in the RunAs annotation must be defined in the deployment
descriptor.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 7 of 23

 –

IBM Software Group

8

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Policy annotations : Overview

� SCA provides policies that influence how implementations,
services and references behave at runtime

� Policy annotations include:
�General intent annotations : @Requires

� Example: @Requires({CONFIDENTIALITY_MESSAGE, INTEGRITY_MESSAGE})

�Specific intent annotations
� Example: @Authentication({“message”, “transport”})

� Policy annotations implementation example
xmlns:qos="http://www.ibm.com/xmlns/prod/websphere/sca/1.0/2007/06"

<binding.ws qos:wsPolicySet="WSHTTPS default"/>

SCA provides facilities for the attachment of policy-related metadata to SCA assemblies, which influence
how implementations, services and references behave at runtime. The policy facilities include Intents and
Policy Sets, where intents express abstract, high-level policy requirements and policy sets express low-level
detailed concrete policies.

General intent annotations :

provides the annotation @Requires for the attachment of any intent to a Java class, to a Java interface or to

elements within classes and interfaces such as methods and fields. The @Requires annotation can attach

one or multiple intents in a single statement.

An example of the @Requires annotation with two qualified intents (from the Security domain) follows:

@Requires({CONFIDENTIALITY_MESSAGE, INTEGRITY_MESSAGE})

This attaches the intents "confidentiality.message" and "integrity.message".

Specific intent annotations - Java annotations that correspond to specific policy intents

The general form of these specific intent annotations is an annotation with a name derived from the name of

the intent itself. If the intent is a qualified intent, qualifiers are supplied as an attribute to the annotation in the
form of a string or an array of strings.

For example, the SCA confidentiality intent

@Requires(CONFIDENTIALITY) intent can also be specified with the specific @Confidentiality intent

annotation. The specific intent annotation for the "integrity" security intent is:@Integrity

An example of a qualified specific intent for the "authentication" intent is:

@Authentication({“message”, “transport”})

This example shown shows the SCA feature pack specific PolicySet implementation with Web services

binding.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 8 of 23

 –

IBM Software Group

9

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Configuration properties

�Properties are used to allow data configuration for
a service component definition

�Configuration properties are identified by
�@Property annotation

�@Property can be used on
�Public and protected data members

�Setter methods

�Constructor

The @Property annotation type is used to annotate a Java class field or a setter method
that is used to inject an SCA property value.

The type of the property injected, which can be a simple Java type or a complex Java
type, is defined by the type of the Java class field or the type of the setter method input
argument.

The @Property annotation may be used on protected or public fields and on setter
methods or on a constructor method.

Properties may also be injected through public setter methods even when the @Property
annotation is not present. However, the @Property annotation must be used in order to
inject a property onto a non-public field. In the case where there is no @Property
annotation, the name of the property is the same as the name of the field or setter.

Where there is both a setter method and a field for a property, the setter method is used.

The @Property annotation has the name and required optional attributes:

• name (optional) – the name of the property, defaults to the name of the field of the
Java class

• required (optional) – specifies whether injection is required, defaults to false.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 9 of 23

 –

IBM Software Group

10

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Accessing services

� From an SCA component
�Reference Injection - preferred

�Component context API

� From a non-SCA component
�CompositeContext API – Example next slide

An SCA component may obtain a service reference through injection or programmatically
through the

component Context API. Using reference injection is the recommended way to access a
service, since it results in code with minimal use of middleware APIs. The
ComponentContext API should be used in cases where reference injection is not possible.

For Non-SCA client (e.g the typical JSP of the samples provided) it gets a reference to
some component service so it can invoke this service. It does this using the
CompositeContext API which returns a reference to a top-level component service
deployed to the domain. This reference is a proxy to the service which you can then
invoke.

The next slide demonstrates the use of the CompositeContext API by non-SCA code.

Note that for this release, the limitation is that the invocation always happens over default
binding. getService is not supported for binding.ws (Web services binding).

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 10 of 23

 –

IBM Software Group

11

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Non-SCA client: Example

public class HelloServiceClient {
public static void main(String[] args) throws Exception {

// Locate the service using SCA APIs
CompositeContext context = CurrentCompositeContext.getContext();
HelloService helloService = context.locateService(HelloService.class,
“HelloComponent ");
...
// Invoke the service
String result = helloService.hello(“Hello World”);

}
}

This is an example of a non-SCA client for a single-service domain component,
HelloComponent with service HelloService

The SCA API class CompositeContext allows a service to be located by name. This is the
component name as it appears in the composite file. The result of this location step is a
service instance or proxy that implements the service interface. When a method is invoked
by the client code (hello() in this case), the SCA runtime will dispatch the operation
parameters to the correct method. The method reference would be a method in the
component implementation according to the definitions in the SCDL file.

Note that: Invocation of located services occurs only over binding.sca . It is not supported
for binding.ws.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 11 of 23

 –

IBM Software Group

12

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Reference injection: Example

import org.osoa.sca.annotations.Reference;
import org.osoa.sca.annotations.Service;

@Service(LoginService.class)
public class LoginServiceImpl implements LoginService {

...

private ProfileService profileService;

@Reference(name=“profileService”, required=true)
public void setProfileService(ProfileService profileService) {

this.profileService = profileService;
}

public int login(String userName, String password) {
...

profileService.setLogin(true);

...
}

}

@Reference is used to inject a
service that resolves a reference

@Reference can be set on
� field
� method
� parameter

Client can invoke service methods

This is an example of a @Reference annotation.

The @Reference annotation type is used to annotate a Java class field or a setter method that is used to

have a service reference injected. The interface of the service injected is defined by the type of the Java

class field or the type of the setter method input argument.

Accessing a service using reference injection is done by defining a field, a setter method parameter, or a

constructor parameter typed by the service interface and annotated with an @Reference annotation.

References may also be injected through public setter methods even when the @Reference annotation is not

present. However, the @Reference annotation must be used in order to inject a reference onto a non public

field. In the case where there is no @Reference annotation, the name of the reference is the same as the

name of the field or setter. Where there is both a setter method and a field for a reference, the setter method

is used.

private HelloService helloService;

@Reference (name="helloService", required=true)

public setHelloService(HelloService service){

helloService = service;

}

public void clientMethod() {

String result = helloService.hello("Hello World!");

}

Like the Property annotation, The @Reference annotation has these attributes:

• name (optional) – the name of the reference, defaults to the name of the field of the Java class

• required (optional) – whether injection of service or services is required. Defaults to true.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 12 of 23

 –

IBM Software Group

13

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

@Reference annotation

*** Where there is both a setter method and a field for a
reference, the setter method is used.

private HelloService helloService;
@Reference (name="helloService", required=true);

public setHelloService(HelloService service){
helloService = service;
}
public void clientMethod() {
String result = helloService.hello("Hello World!");
}

This is another example of reference annotation.

Where there is both a setter method and a field for a reference, the setter method is used.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 13 of 23

 –

IBM Software Group

14

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Asynchronous model

� SCA provides the ability for services to be called
synchronously or asynchronously

� Asynchronous support
�One way (non-blocking)

�Callbacks

invoke

Client Service

further
processing

One Way

invoke

Client Service

callback

Callbacks

further
processing

Asynchronous programming of a service is where a client invokes a service and carries on
executing without waiting for the service to execute. Typically, the invoked service
executes at some later time. Output from the invoked service, if any, must be fed back to
the client through a separate mechanism, since no output is available at the point where
the service is invoked. This is in contrast to the call-and-return style of synchronous
programming, where the invoked service executes and returns any output to the client
before the client continues. The SCA asynchronous programming model consists of
support for non-blocking method calls, and callbacks.

The Java annotations specification includes support for both synchronous and
asynchronous invocation styles. The examples shown so far illustrate a synchronous
interaction style.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 14 of 23

 –

IBM Software Group

15

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Asynchronous model: One way

�Simplest type of asynchronous invocation
�Client invokes a service and continues processing without

waiting for the service to complete

�Methods supporting a one way invocation style
�Are identified with the @OneWay annotation

�Must return void

�Must not throw any exceptions

@OneWay

Nonblocking calls represent the simplest form of asynchronous programming, where the
client of the service invokes the service and continues processing immediately, without
waiting for the service to execute.

Any method that returns "void" and has no declared exceptions may be marked with an
@OneWay annotation. This means that the method is non-blocking and communication
with the service provider may use a binding that buffers the requests and sends it at some
later time.

Note that SCA does not currently define a mechanism for making non-blocking calls to
methods that return values or are declared to throw exceptions. It is recommended that
you define one-way methods as often as possible, in order to give the greatest degree of
binding flexibility.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 15 of 23

 –

IBM Software Group

16

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Asynchronous model: Callbacks

�Provides communication from a service provider
back to the client through a callback service
�Also known as a bi-directional services

�Services have two interfaces
�Interface for the provided service

�Interface for the callback

�Clients provide an implementation for the callback
interface

� The @Callback annotation is used to specify a
callback interface

The other asynchronous interaction style is the callback style. In this type of interaction
style the client invokes a service method, and control is immediately returned to the client
while the service processes the request. The client is notified by the service provider by
way of the callback interface. The @Callback annotation is used to specify the callback
interface used for a particular interface.

With this type of asynchronous interaction, the client must implement a specific callback
interface that is used by the service provider to handle the response to an asynchronous
call.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 16 of 23

 –

IBM Software Group

17

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Limitations

�Only stateless and composite are valid values for
the @Scope annotation

�@conversational services are not supported

Here is a list of some limitations on the Java implementation and annotation model as far

as this release is concerned:

Only stateless and composite are valid values for the @Scope annotation

@conversational services are not supported.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 17 of 23

 –

IBM Software Group

18

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Example: creating an SCA service (remote)

Java interface

// This is the service interface
package services.hello;
import
org.osoa.sca.annotations.Rem
otable;

@Remotable

public interface HelloService {
String hello(String message);
}

Java implementation

// This is the service implementation
package services.hello;
import org.osoa.sca.annotations.*;
import
org.osoa.sca.annotations.Service;

@Service(HelloService.class)

public class HelloServiceImpl
implements HelloService {
public String hello(String message) {
...
}}

Create component

<composite
xmlns="http://www.osoa.org/xm
lns/sca/1.0"

xmlns:foe="http://helloservice"
name="HelloService">

<component
name="HelloService">

<implementation.java
class="services.hello.HelloServi
ceImpl"/>

</component>
</composite>

Deploy service

1
2 3

4

Add
@Remotable

Add
@service

This example will walk you through quick steps for creating an SCA service in terms of
Java implementation/Annotations model.

Start with Java interface example HelloService. If you are creating a service with a
remotable interface, add the @Remotable annotation. Unless you have an existing Java
implementation, write a Java implementation of the generated Java interface that reflects
your business logic. Be sure to add the @Service annotation to the Java implementation.
Create a component using the component implementation. You will create a component
definition in a SCDL file that references the original Java implementation class, including
its Java interface. In SCA, a component is a configured instance of a component
implementation. There are other aspects of defining a component that are not shown here
such as configuring bindings, configuring property values, defining intents, attaching policy
sets, and resolving references. This is a simple general example. After your component is
defined as part of a deployable composite, either directly or recursively you are ready to
deploy the SCA service by creating an SCA business level application.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 18 of 23

 –

IBM Software Group

19

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Summary and referencesSummary and references

Section

Finally a summary.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 19 of 23

 –

IBM Software Group

20

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Summary

� The WebSphere Application Server V7 Feature
Pack for SCA provides support for Java component
implementation model and Java common
annotations

�Specification describes annotations and
programming support for key SCA features

The Java experience for SCA programmers should be one that leverages the ease-of-use
characteristics of Java 5, which uses annotations and dependency injection. It
demonstrates a real, tangible separation of concerns that frees the business logic from
configuration and protocol specific APIs that burden applications today. When this Java
experience is coupled with the visual composition metaphors that can be realized by tools
to edit the SCA assembly. The focus of developing the application aligns directly with the
principles of SOA – loosely-coupled, reused, coarse-grained services composed from a
broad-array of implementation and implementation technologies. That focus squarely on
the Business Service itself, and not burdened with specific implementation.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 20 of 23

 –

IBM Software Group

21

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Reference

�SCA Java annotations and APIs
http://www.osoa.org/download/attachments/35/SCA_JavaAnnotationsAndAPIs_V100.pdf?version=1

�SCA Java component implementation
http://www.osoa.org/download/attachments/35/SCA_JavaComponentImplementation_V100.pdf?version=1

Here is a reference to the specs.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 21 of 23

 –

IBM Software Group

22

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_WASv7SCA_JavaProgrammingModel_specifications.ppt

This module is also available in PDF format at:
../WASv7SCA_JavaProgrammingModel_specifications.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 22 of 23

 –

IBM Software Group

23

SCA Java annotation and implementation programming Specification examples © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

EJB, Java, JSP, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WASv7SCA_JavaProgrammingModel_specifications.ppt Page 23 of 23

