

WebSphere Development

Enhancing J2EE Applications with Ajax

An example using the IBM® WebSphere® Application Server Feature Pack

for Web 2.0

Kevin Haverlock
WebSphere Application Server Development, Ajax Tech nologies
kbh@us.ibm.com

 2

Ajax represents an evolution of existing Web development that lends itself to the
creation of rich user interface presentations on the browser. The dividing line is
becoming blurred between the capabilities of a heavy weight graphical user interface
application running on the native operating system and the richness possible within
today’s browsers. One does not have to look much further than Google Maps and the
newly renovated Yahoo! Mail to see how Ajax technology is bearing out.

The continued innovation in browser based user interfaces have caused customers to
want these kinds of capabilities with the Web sites they interact with. Ajax development
is an exciting opportunity to create new and innovative approaches to delivering content
to users.

At the same time, how does one achieve this in the context of today’s J2EE
applications? This article will look at how an existing J2EE application was enhanced
using IBM’s recent feature pack for Ajax development on WebSphere Application Server.

Figure 1.0 shows a typical Web-based application pattern that is very common in a Web
development scenario. The server accepts requests from the browsers and issues a
response back to the client. In the case of a browser client, the browser sends the
request and waits for the response. The response is normally HTML which is nothing
more than meta-data containing the presentation information of how the page should be
laid out in the browser. There may be additional page styling that is returned in the form
of Content Style Sheets (CSS). The creation of the content is done on the server and
returned to the browser. The content of the page is often aggregated from a number of
back-end sources. These may be additional Web services requests to other domains or
content from persistent data stores such as DB2, Derby, or MySql. While there may also
be JavaScript present in the page returned to the server, it normally is used in a
supporting role to make the page seem more interactive.

Figure 1.0: A-typical Web architecture

An Ajax design pattern allows the shifting of the balance of the user interface to the
browser client. The creation of the viewable content can be shared between the browser

 3

and server. Some Web applications have the majority of the presentation done within
the browser. An example would be Google Docs Beta which provides spreadsheet,
documentation, and presentation functionality in a form one would expect to find running
on a local operating system. These applications mix customized widget code that
executes on the client with static HTML. Figure 2.0 shows how Ajax can impact the
typical Web based application.

Figure 2.0: An Ajax enhanced Web architecture

In an Ajax model, creation of content in the browser is done by the browser locally. In
JavaScript this done by manipulating the Document Object Model that the browser
maintains to describe the document the user is viewing. Updates to the DOM are
immediately reflected in the presentation that the user sees within the browser. On the
browser side the constructs are known as ‘widgets’ and are used to described self
contained code that can be used to manipulate the presentation, react to user input, or
asynchronously communicate back to the server.

With aspects of the presentation delegated to the browser, the browser now needs a
way to communicate back to the server to derive information. As an example, the widget
may have a Web table to update with the data representing rows in a database server.
In JavaScript, a powerful API can be used called XMLHttpRequest (XHR). An XHR
request allows the establishment of an independent communication channel between
the server and browser page the user is viewing. The API allows the transfer of XML or
other text information using HTTP. The server treats the request from the client as it
would a normal request and returns a response. The response can contain the data
the widget needs to display in the browser.

 4

A look at the IBM WebSphere Application Server Feat ure Pack
for Web 2.0
The IBM WebSphere Application Server Feature Pack for Web 2.0 provides technology
that can be used to create Ajax styled architectures. The feature pack is available with
WebSphere application server 6.1, 6.0.2 and WebSphere Community Edition 2.0. The
feature pack’s functionality is intended to provide developers and architects resources to
create Ajax styled Web applications and architectures. The feature pack includes both
client-side runtime and server-side functionality. Figure 3.0 shows the installation panel
for the feature pack.

Figure 3.0 – Feature pack installation panel

 5

The Client-Runtime – Dojo Toolkit and Extensions by IBM
The Client-Runtime included with the feature pack consists of the technologies that are
running on the browser-client. They include the open source Dojo Toolkit and a set of
IBM extensions to the Dojo Toolkit to support additional functionality.

The Dojo Toolkit 1.0 (www.dojotoolkit.org) is a powerful open-source JavaScript library
that can be used to create rich and varied user interfaces running within a browser. The
library requires no browser-side runtime plug-in and runs natively on all major browsers.
This is boon for JavaScript developers since it helps abstract away the eccentricity of
different browser implementers.

The open-source Dojo Toolkit provided with the IBM’s feature pack is divided into five
sections:

Base & Core
The Base is the kernel of the Dojo Toolkit and consists of dojo.js. The file is
designed to be compact and optimized so as not take long to download to the
browser. It contains the bootstrapping, useful utilities, event notification, to name
just a few items.

The Core, contains wide variety of graphical user interface widgets and the IO
Transport for XHR requests to the server.

Dijit
Dijit builds on the Base and Core by providing a rich set of additional widget
controls. The controls are internationalized and accessibility enabled.

Dojox
Dojox contains experimental aspects of the Dojo Toolkit and represents innovative
material that may some day move into the base or Dijit modules. Dojox is an
incubator of sorts and a preview of new features. Some of the modules located in
Dojox include charting, offline storage, and grid to name a few.

Util
The Util contains a testing harness for Dojo and can be used to test the widgets
that are provided with the Dojo Toolkit.

The best way to begin to get a feel for the Dojo Toolkit is to experiment with the test
samples that are provided. The samples can be opened directly within the browser and
offer a glimpse at the incredible flexibility and creativity for creating your own custom
widgets or using what is already provided in the toolkit.

 6

IBM Extensions to the Dojo Toolkit
In addition to the open-source Dojo Toolkit for creating rich client side applications, IBM
also provides a set of JavaScript extensions that developers will find useful.

Atom Feed Widget
The Atom library is a client-side widget that can be used to render and use Atom
syndication feeds. The library contains sample components to help developers utilize
Atom feeds with their code:

• A base library, supplying utility functions, an implementation of the Atom data
model as JavaScript objects, and a wrapper object to handle two-way
communication with an Atom feed

• The AppStore, an implementation of the dojo.data APIs that provides a data
storage solution supported by an application server

IBM Gauge Widgets
The gauge library includes a pair of widgets for displaying numerical data in a graphically
rich way. Using Scalable Vector Graphics (SVG) or Vector Markup Language (VML),
depending on the browser, the AnalogGauge and BarGraph widgets display numerical
data with customizable ranges, tick marks, and indicators at any size. The Gauge
Widget can be used to create dynamically self-updating graphical displays and
dashboards.

As with the Atom library, the gauge library comes with several examples and test cases
to show its capabilities. Figure 4.0 shows an example of the IBM Gauge library.

Figure 4.0 – IBM Gauge and Bar Graph
widgets

 7

IBM SOAP
The IBM SOAP extension can be used to connect a client-side browser widget to an
existing SOAP-based service. The overhead of creating a SOAP envelope is handled by
the extension. Remote procedure calls to invoke the SOAP service are also handled by
the extension.

IBM Open Search library
The IBM Open Search extension makes it easy to invoke any Open Search-compliant
service and to bind search results to widgets within your Ajax application.

Server-side libraries and connectivity
While the discussion of the IBM feature pack above describes the client-side runtime,
there is rich set of libraries and connectivity features provided on the server to assist in
client development. The features include:

The Ajax proxy
The feature pack provides a Servlet based forward proxy that can be used in the
aggregation of content from different sites. To provide control, the proxy contains a
white-listing configuration file that can be used to define the sites the proxy can access.
Additionally, the proxy can filter on HTTP headers, cookies and mime-types to provide a
level of control over the sites that a browser-based client can access.

Web-remoting for Java Components
A challenge in combining Ajax style architectures and J2EE is mapping client-side
runtime to J2EE constructs. As an example, consider a JavaScript widget that displays
information in a table that is dynamically created using JavaScript. The data needed for
the table exists on the server and is accessible using EJBs, how does one access those
EJB constructs?

The feature pack provides a Remote Procedure Call Adapter (RPCAdapter) that is
provided as a JAR library which can be embedded into a server-side Web application.
The RPCAdapter can be used to accept HTTP requests such as POST and GET and
map the requests directly to user created classes. One of the powerful aspects of
RPCAdapter is the ability to serialize EJB session and Collection data to a JSON or XML
stream returned to the browser client. The JSON and XML data can contain the
information to be displayed by the widget.

 8

Apache Abdera libraries
Apache Abdera is an open-source project providing feed syndication support. Abdera
addresses both the Atom syndication format and the Atom publishing protocol. The
Abdera libraries can used on the server to read syndication feeds from other sources or
to generate your own feed content for use by your widgets.

JSON4J
The JSON4J library is an implementation of a set of JSON handling classes for use
within Java environments. The library can be used to derive your own JSON data
streams. The JSON4J library provides the following functions:

• A simple Java model for constructing and manipulating data to be rendered as
JSON

• A fast transform for XML-to-JSON conversion. JSON4J can be used to convert
an XML reply from a Web service into a JSON structure for easy use in an Ajax
application.

The advantage of the transformation is that Ajax-patterned applications can
handle JSON formatted data without having to rely on ActiveX objects in
Microsoft® Internet Explorer XML transformations and other platform-specific
XML parsers. In addition, JSON formatted data tends to be more compact and
efficient to transfer.

• A JSON string and stream parser that can generate the corresponding
JSONObject, which represents that JSON structure in Java.

Web messaging service
The Web messaging service uses a publish and subscribe pattern to connect the
browser to the WebSphere Application Server Service Integration Bus for server-side
event push to the browser. Client-server communication is achieved through the Bayeux
protocol. You can consider the Web messaging service implementation as a comet
server implementation. The Dojo Toolkit provides client-side support.

Currently, the Dojo Toolkit is the only JavaScript library to support the Bayeux protocol,
although any JavaScript library that implements Bayeux protocol support can
communicate with Web messaging service. The Web messaging service server bridges
browser clients to the Service Integration Bus, allowing a Web service or any other item
connected to the bus to publish events to Web-based clients. You can use the Web
messaging service in a new or existing application by placing a utility file library JAR in
an application Web module, setting up a simple configuration file, and configuring
Servlet mappings. The Web messaging service is included in the Quote Streamer for
WebSphere Application Server product samples.

 9

Putting it together: A J2EE Example
At this point, the article has discussed a typical Ajax based architecture and the
motivation and features behind the feature pack for IBM WebSphere. Let’s look at how
you might put it together into an existing J2EE application.

Plants By WebSphere is among a number of samples that are provided with the IBM
WebSphere Application Server Feature Pack for Web 2.0. The sample application
represents a fictitious online Plant store where one can order and purchase flowers,
trees, vegetables, and accessories. Figure 5.0 shows the front page of the application.

Figure 5.0 – Front page of PlantsByWebSpereAjax

Figure 6.0 describes the architecture of the application in it’s original form before
attempting to add Ajax styled features. The architecture is intended to be fairly typical
for a J2EE application running on WebSphere Application Server. At a high level, the
application adheres to a Model-View-Controller design pattern which most Web
applications follow on some level. A Browser accesses the URL for the application which
returns a JSP rendered HTML page. Additional requests are issued to the Web
application from the browser and Servlets are used to control the flow as users move
through the purchase request. EJBs are used to serve model data available on the
database.

 10

Figure 6.0: A-typical Web architecture for Plants B y WebSphere

Figure 7.0 shows how the architecture of the application has been augmented using
Ajax.

The intention is not to rewrite the application, but rather take advantage of technologies
in the IBM feature pack that would improve and create a more interactive and rich
experience for the user.

Figure 7.0: Enhancement with Ajax and feature pack functionality

On the browser side, the application used widgets provided with the Dojo Toolkit.
Additionally, customized user interface widgets were created to improve the interactive
nature of Plants By WebSphere while not rewriting it. The customized user interface
widgets are asynchronous, meaning they communicate using the browsers XHR
mechanism supported by the Dojo Toolkit. The widgets use an XML interchange format
to exchange data with the server. On the server, the RPCAdapter provided with the
feature pack is used to convert EJB data into an XML interchange format that can easily
be consumed by your newly created widgets on the browser.

A characteristic of Ajax applications is an improved response on the user interface.
Plants By WebSphere uses the Dojo Toolkit within the Web browser to improve the User

 11

interface of the application. The Dojo Toolkit is pure JavaScript and the JavaScript files
can be hosted directly in the Web-Content directory of the Web Archive File (WAR) or
exist as static Web content on a performance optimized content delivery network. As a
sample, the Dojo Toolkit JavaScript files are hosted as part of the WAR.

The Dojo Toolkit supports being used declaratively or procedurally. In a declarative role,
you inline the JavaScript you plan to use directly within the HTML content. The Dojo
Toolkit contains a wealth of widgets that can be used declaratively within HTML reducing
the need for you to hand code the function. In the case of Plants By WebSphere, Dojo
Toolkit widgets are directly embedded into the JSP pages.

An Example: Web Form Handling
A common scenario in Web applications is Form handling. The user enters data into a
Web-page such as name, address, preferences, and so on. The information is then sent
back to the server for processing and the result returned to the user. A common action
on the form is validation to ensure the content the user is entering is correct. Was a
number entered in place of a letter? did they enter a correct zip code?. The Dojo Toolkit
provides a rich set of form handling validation that can be added to Web pages. Listed
below is an example that is used within the Plants By WebSphere application and
represents a typical example of how to declaratively use the Dojo Toolkit within a Web
application.

Let’s begin by declaring the usage of Dojo within your HTML page. Looking at listing 1.0,
the first <script> tag declares usage of dojo.js. Dojo.js is the core Dojo Toolkit kernel
and is required when one use the Dojo Toolkit. The second <script> tag declares the
dojo widgets that the page uses. The dojo.declare clause compares to the Java import
or the C++ includes clause. The statement tells the dojo.parser where to locate the
appropriate Dojo Toolkit JavaScript file the page uses. For this example, the page uses
the dijit.form.ValidationTextBox widget. Additionally, the JavaScript dojo.parser needs
to be included as well. The parser is used to scan the page for widgets to declare.
Listing 2.0 will explain why.

Listing 1.0: Declaring the usage of Dojo’s Validati onTextBox

<title ></ title >

<script type ="text/javascript"
 src ="/PlantsByWebSphereAjax//dojo/dojo.js"
 djConfig ="isDebug: false, parseOnLoad: true,
 extraLocale: ['de-de', 'en-us']" >
</ script >

<script type ="text/javascript" >
 dojo.require("dijit.form.ValidationTextBox");
 dojo.require("dojo.parser"); // scan page for widgets and
 // instantiate them
</ script >

 12

Listing 1.0 showed how the Dojo Toolkit is declared within your JavaScript and the type
of widgets the page will use. Listing 2.0 shows how the widget is declared within the
page. The dojo.parser that was declared in Listing 1.0 will be used to scan the page and
inline the necessary JavaScript code from the Dojo Toolkit to enable dynamic form
validation.

Listing 2.0: Declaring the use of Dojo’s Validation TextBox widget

Figure 6.0 shows the result. When the user fails to enter a value for a required field, the
browser will dynamically inform the user.

Figure 6.0

Form validation is a simple example of how one can be begin to use Ajax within an
existing J2EE application. At the same time, it represents a powerful example of how
seamlessly a user interface can be improved without having to rewrite a ton of existing
code.

There are numerous other examples of how declarative forms of programming using the
Dojo Toolkit can be used within a J2EE application. Dojo ships a wide array of sample
applications within the test directories of the Dojo Toolkit. These applications will run
within a browser by opening the HTML page.

<TD width ="100%" >
 < P>
 < input type ="text" id ="sname" name="_sname" class ="medium"
 dojoType ="dijit.form.ValidationTextBox"
 propercase ="true"
 required ="true"
 promptMessage ="Enter Name" />
 </ P>
</ TD>

 13

Creating your own custom widgets
Another interesting example is creating your own customized JavaScript widgets. Dojo
provides a powerful framework to create innovative widgets that can be embedded
directly within your HTML pages.

Figure 7.0 shows the catalog browsing page for the Plants By WebSphere application.
The catalog page shows pictures of items across the top and detail information of the
item at the bottom when the user clicks one of the images.

Figure 7.0: Catalog page for Plants By WebSphere

While this page consists of a number of different widgets, let’s look at the ItemDetails
Widget at the bottom in figure 8.0. The itemDetail widget fetches information from the
server and displays it in the details window. The user can add the item to the cart or
drag it to the cart using the left mouse button. The widget fetches information from the
server when the user clicks on one of the catalog items at the top. Let’s look at how the
ItemDetail widget was created.

 14

Figure 8.0: ItemDetails Widget

When creating widgets, there are three files one needs to consider. The first two are the
HTML and CSS template files. These will be used to define the skeleton of what the
page will look like when the widget is rendered within the browser. The HTML page will
contain declared attachment points where the DOM elements will be inserted by your
widget. The attachment points are called DojoAttachPoint.

Listing 3.0 shows a portion of the ItemDetail widget’s HTML template and the
DojoAttachPoint for the table rows. As the JavaScript in the customized widget process
content, it will dynamically create elements and insert them into your attachment points
for the DOM.

 15

Listing 3.0: dojoAtachPoint’s in ItemDetails.html D ojo Template

The widget defines the dynamic nature of your widget. You begin by declaring your
widtget with the dojo.declare clause show listing 4.0

The widget’s template and CSS defines the appearance of the widget and identify where
in the DOM updates will occur. The next step is to add the JavaScript code to the widget
that does the work.

Listing 4.0 shows the beginning section of the customized ItemDetail widget. The code
begins by declaring the widget to be created: dojo.provide("ibm.widget.ItemDetails");

<div >
<table cellpadding =" 2" cellspacing =" 2" border =" 0" width =" 100%"
 height =" 100%" >
 < tr width =" 100%" height =" 100%" >
 <td valign =" top " align =" left " width =" 75%" >
 <span class =" itemNameText "
 dojoAttachPoint=" nameElement " ></ span >

 < span dojoAttachPoint=" descElement "
 class =" itemDescText " ></ span >

 < table cellspacing =" 0" cellpadding =" 0" width =" 100%"
 height =" 100%" >
 <tr style =" width : 80%" >
 <td valign =" top " align =" left " >
 <span style =" font-family :verdana ,arial ,
 sans-serif ;
 font-size :11px ;" >Price: </ span >
 </ td >
 < td valign =" top " >
 < span class =" itemNameText " >$

 </ span ></ span >
 </ td >
 < td valign =" top " align =" right " >
 <button dojoType =" dijit.form.Button "
 dojoAttachEvent=" onclick: addToCart " >
 Add to cart </ button >
 </ td >
 < / tr >
 </ table >

 // Additional content

 </ table >
</ div >

 16

The name is used to reference the newly created widget.

Below the dojo.provide is the dojo.declare. The dojo.declare defines the widget and any
inheritance that this widget might have. In this case, the code declares inheritance from
base dijit._Widget and dijit._Templated. Since this is a templated widget, the code
declares the templatePath. The template path defines the location of the template that
was defined above. The dojo.moduleUrl is a utility function that is used to resolve the
location of the template.

Further down in the code, the DojoAtachPoint declarations defined in listing 3.0 are
declared. These will be the root nodes of the DOM references that will be updated. In
this case nameElement, descElement are declared among a number of other variables.
The article will discuss in the next section how these elements are modified.

Listing 4.0: Declaring the ItemDetails widget

To really make the widget interesting, data is needed to populate the widget. The data
for the details widget is located on the server. How does one get the description data to
render in the page?

The Dojo Toolkit offers a powerful IO Transport mechanism that can be used to issue
XMLHttpRequests (XHR) requests to the server and process the result. The XHR API
opens an independent communication channel within the browser. XHR is at the heart
of what gives Ajax its interactive feel.

dojo . provide ("ibm.widget.ItemDetails");

dojo . declare (
 "ibm.widget.ItemDetails" ,
 [dijit . _Widget , dijit . _Templated],
 {
 initializer : function(){ },
 templatePath :
 dojo . moduleUrl ("ibm" , "widget/templates/ItemDetails.html"),
 isContainer : false ,

 // your DOM nodes declared as DojoAttachPoint in th e
 // Template:
 nameElement : null ,
 descElement : null ,
 imageElement : null ,
 priceElement : null ,

 // Additional Code

 17

Listing 5.0 shows the use of the dojo.xhrGet function to retrieve data from the server.
The Dojo Toolkit wrappers the XHR API with it’s own API which makes dealing with the
XHR API easier. The url: defines the address of the server. The ?p0="+item.id is a
URL parameter that is passed to the server. The timeout defines how long to wait
before giving up on the connection to the server. The headers define additional HTTP
headers that should be applied to the request sent to the server. The handleAs tells the
Dojo Toolkit how to handle the response. In this case, the expected response is XML
code.

The deferred.addCallback(function (response) is the callback function that will be
invoked by the Dojo Toolkit when the response is returned from the server. The
previous section covered the DojoAttachPoint as being the location of DOM node to be
modified. The descElement is one of the DOM nodes modified here. The
self.descElement .innerHTML value is set to the description text that was returned in the
XML. The descElement is the DOM node that was declared previously in the Template
file of the widget. See listing 3.0.

Listing 5.0: XHR GET request to the server

Once your customized Dojo Widget is created, it needs to be inserted into your HTML
page so it can be used. Figure 8.0 shows what the page looks like. The listing is from
the flowers.html file. Listing 6.0 shows a fragment of the HTML behind the page. The
DIV tag is used to embed the widget and contains the keyword dojoType which declares

var deferred = dojo . xhrGet ({
 url : self . url +"?p0=" +item . id ,
 timeout : 5000 ,
 headers : { "Content-Type" : "text/html" },
 handleAs : "xml"
 });

deferred . addCallback (function(response){

 var itemElement =
 response . getElementsByTagName ("entry")[0];

 self . descElement. innerHTML =
itemElement . getElementsByTagName ("description")[0]. firstChild . nod
eValue ;

 self . hiddenData . setAttribute ("itemname" , item . name);
 self . hiddenData . setAttribute ("itemprice" , item . price);
 self . hiddenData . setAttribute ("itemid" , item . id);

 return response ;
 });

 18

the ItemDetail widget. There are additional parameters passed to the widget in the form
of url which is the URL request to the RPCAdapter on the server. If you recall, the
ItemDetails widget makes an XHR request to the server to retrieve its data to display.
The server side code will be covered in the next section which looks at the RPCAdapter
usage.

Listing 6.0: Declaring ItemDetails in the HTML pag e

<body style =" background : #FFF;" >

 //additional HTML

<div dojoType=" ibm.widget.ItemDetails "
url =" /PlantsByWebSphereAjax/servlet/RPCAdapter/httprpc/S ample/detai
lRequest "
style =" width : 100%;"
itemTopic =" itemdetails_flowers " ></ div >

</ body >

 19

Looking at the Server side.
At this point, you have seen how a customized widget is created in Dojo and how that
widget would go about issuing XHR request to the server. Let’s look at how the server
might handle those requests.

In the case of the Plants By WebSphere application, the widget issues an XHR request
to the server for some data. The Servlet reads the request, looks up the correct EJB.
The EJB is called and the EJB container issues a request to the database which returns
the result. The result needs to be encoded into XML and returned back to the
JavaScript widget on the browser.

For this scenario, the Remote Procedure Call Adapter (RPCAdapter) which is provided
with IBM feature pack for WebSphere Application Server will be used to connect to the
Plants By WebSphere EJBs

The RPCAdapter runtime JAR is included with the Plants By WebSphere application and
is configured using an XML file located in the WEB-INF of the WAR file. Listing 7.0
shows an example configuration.

Listing 7.0 – RpcAdapterConfig.xml

<?xml version="1.0" encoding="UTF-8" ?>
<rpcAdapter >
 <default-format >xml </ default-format >
 <services >
 <pojo >
 <name>Sample </ name>

<implementation >
 com.ibm.websphere.samples.plantsbywebspherewar.RpcC onnecter
</ implementation >

 <methods filter =" whitelisting " >
 < method >
 <name>detailRequest </ name>
 <description >
 returns back detail information for an item
 </ description >
 <http-method >GET</ http-method >
 <parameters >
 <parameter >
 <name source =" request " >message </ name>
 <description >
 Contains the message to be returned
 </ description >
 </ parameter >
 </ parameters >
 </ method >
 </ methods >
 </ pojo >

 </ services >
</ rpcAdapter >

 20

Let’s look closer at the RpcAdapterConfig.xml file. The <default-format> returned by the
RPCAdapter is declared as XML. The adapter also supports returning data in
JavaScript Object Notation (JSON) as well. The <implementation> element contains the
user defined class definition the RPCAdapter will instantiate to invoke the method. The
method name in the class to call is defined in the <name> element and is called
detailRequest. The <http-method> the RPCAdapter is expecting is the GET. The
parameter that is expected on the URL request is called ‘message’.

Putting it all together, the ItemDetail widget from Figure 8.0 would invoke the
RPCAdapter using the following format where F001 is the identifier of the item.

The result returned by the RPCAdapter would be XML data. Figure 9.0 shows the XML
output.

Figure 9.0: XML output returned to the ItemDetail widget from the RPCAdapter

Lets take a closer look a the implementation class. This was defined in the
RpcAdapterConfig.xml file and contains the detailRequest method. Listing 8.0 shows

/PlantsByWebSphereAjax/servlet/RPCAdapter/httprpc/Sample/detailRequest?message=F0001

<results>
 <entry>
 <description>
African orchids are some of the most endangered and rare kinds of
orchids grown today. This variety is medium yellow with varigated
salmon and pink insides. Height: 18 to 28 inches.
 </description>
 
 <id>F0001</id>
 <name>African Orchid</name>
 <price>$250.00</price>

 <thumb>
/PlantsByWebSphereAjax/servlet/ImageServlet?getimag ebyid=F0001
 </thumb>
 <dept>0</dept>
 <heading>Rare Delicate Beauty</heading>
 </entry>
</results>

 21

the implementation class
com.ibm.websphere.samples.plantsbywebspherewar.RpcConnecter defined in the
RpcAdapterConfig.xml configuration file in the previous listing.

Listing 8.0 – implementation class
com.ibm.websphere.samples.plantsbywebspherewar.RpcC onnecter

public Collection detailRequest(String itemId) {

 ItemDetailPojo itemDetailPojo = new ItemDetailPojo();
 Vector itemCollection = new Vector();

 if (itemId != null) {
 try
 {
 Catalog catalog = catalogHome.create();
 StoreItem item = (StoreItem)
 catalog.getItem(itemId);

 if (item != null) {
 itemDetailPojo.name = item.getNa me();
 itemDetailPojo.id = item.getID ();
 itemDetailPojo.price =
java.text.NumberFormat.getCurrencyInstance(java.uti l.Locale.US).for
mat(new Float(item.getPrice()));

 itemDetailPojo.heading = item.getHe ading();
 itemDetailPojo.description = item.getDe scription();
 itemDetailPojo.dept = new
 Integer(item.getCategor y()).toString();
 itemDetailPojo.thumb =
"/PlantsByWebSphereAjax/servlet/ImageServlet?getima gebyid=" +item.ge
tID();
 itemDetailPojo.image =
"/PlantsByWebSphereAjax/servlet/ImageServlet?getima gebyid=" +item.ge
tID();

 itemCollection.add(itemDetailPojo);
 }

 }
 catch (javax.ejb.CreateException e)
 {
 Util.debug("RpcConnecter: EJB Create Exception in
 detailRequest(...)");
 }
 catch (Exception e)
 {
 Util.debug("RpcConnecter: general Exception in
 detailRequest(...)");
 }
 }
 return itemCollection;
}

 22

The method detailrequest() returns back a Collection of POJO elements. The Collection
class is part of the java.util package. The POJO elements are derived from data
returned by invoking the StoreItem EJB. The StoreItem is retrieved from the Catalog
EJB. The Catalog EJB is a collection of the items that are contained within the Plants By
WebSphere inventory located in the Derby database. Once a Java Collection is
returned, the RPCAdapter will transparently map the Collection to XML data. The
Collection’s key corresponds to the XML element and the key’s value to the XML value.
The XML stream is returned to the ItemDetail widget.

By using the RPCAdapter and having it return XML, you have in affect created a service
that others can connect too as well. The service only returns data and it would be up to
the caller to figure out how to render the data. A usage scenario might be a partner
company of Plants By WebSphere that aggregates data from its own greenhouse with
the catalog information maintained by Plants By WebSphere. This scenario is
sometimes referred to as a mashup.

Other Scenarios to Think About
While the Plants By WebSphere application does not implement the specific scenarios
listed below, they are nevertheless helpful in understanding other ways to use the
benefits of the IBM WebSphere Application Server Feature Pack for Web 2.0 in J2EE
applications.

Proxy services
The article talked briefly about creating a mashup application, combining content from
multiple sites to create the appearance of one site. The classic mashup example is
taking Google maps and customizing it with user unique location based content. One of
the challenges in creating mashups is dealing with cross site scripting within the browser.
As an example, if you go to mydomain.com to access the Plants By WebSphere
application, but the widgets you created issue XML requests to mypartner.com using
XHR, then the browser will prevent the request. Normally this is a very good behavior
since it prevents cross-site scripting vulnerabilities from occurring when you access
pages on the Web.

In the case of Plants By WebSphere, you want to allow your widgets to access other
sites for content. How do you allow cross site scripting responsibly within the browser?

One common way is to use a forward proxy. A forward proxy takes the request from the
browser, looks at the URL, and forwards the requests to the appropriate domain. From
the browsers perspective, the information appears to come from the same domain, but in
reality, the content request is made by the proxy on behalf of the client. The Ajax proxy
that is shipped with the IBM WebSphere Application Server Feature Pack for Web 2.0
includes a customizable Servlet proxy.

The proxy is Servlet based and can be embedded directly in an EAR file or run on your
server as a WAR file. The proxy also includes a white-listing ability which you can
further use to restrict the kinds of requests that the proxy is allowed to service. The
proxy also includes the ability to filter on headers, mime-types, and cookies. The proxy
is customizable using an XML file.

 23

Feed Syndication – tell the world
Web syndication is making available content to other sites to use and is often called
Web feeds. Typically, a site makes available a Web feed which contains a title and a
short description of the content. If the user is interested in the content, they click on the
link and are taken to the site to read more detailed information. In the case of the
Plants By WebSphere application, one can imagine a scenario where a Web feed
contains additional planting tips, sales, or blogs by horticulture specialists.

The IBM Feature pack for Web 2.0 provides the Apache Abdera library which includes
an implementation of the Atom Syndication Format and Atom Publishing protocol to help
you develop your own feeds.

A syndication solution would not be complete without taking into account the client side
implementation. The IBM feature pack provides as part of the Dojo Toolkit extensions
an Atom Feed viewer. The viewer can be embedded in your HTML as a widget to
provide feed viewing capabilities.

Resources

• IBM® WebSphere® Application Server Feature Pack for Web 2.0
http://www.ibm.com/software/webservers/appserv/was/featurepacks/web20/

• Dojo Toolkit Web site.

http://www.dojotoolkit.org

• Dojo Toolkit documentation
http://www.dojotoolkit.org/docs

• Apache Abdera

http://incubator.apache.org/abdera/

About the Author
Kevin Haverlock is an architect and developer with IBM’s WebSphere Application Server
product. He is currently part of IBM’s WebSphere Application Server Feature Pack for
Web 2.0 team. Kevin can be reached at kbh@us.ibm.com
.

 24

