
WASv61_WSFP_JAX-WS_Development.ppt Page 1 of 21

®

IBM Software Group

© 2007 IBM Corporation

Updated July 23, 2007

IBM® WebSphere ® Application Server
V6.1 Feature Pack for Web services

JAX-WS development

This presentation will provide and understanding of the changes in the development model
for JAX-WS.

WASv61_WSFP_JAX-WS_Development.ppt Page 2 of 21

IBM Software Group

2

JAX-WS development © 2007 IBM Corporation

Agenda

�Developing a Web service based on JAX-WS

�Migration and coexistence

�Problem determination

This presentation will begin with information about how to develop a Web service based
on JAX-WS, and additional information on migration and coexistence of applications. Next
will be a section on problem determination.

WASv61_WSFP_JAX-WS_Development.ppt Page 3 of 21

IBM Software Group

3

JAX-WS development © 2007 IBM Corporation

Developing a Web serviceDeveloping a Web service

Section

The next section discusses developing a Web service.

WASv61_WSFP_JAX-WS_Development.ppt Page 4 of 21

IBM Software Group

4

JAX-WS development © 2007 IBM Corporation

JAX-WS / JAX-RPC comparison

JAX-RPC 1.1 Code

public interface StockQuote
extends Remote {

public float getQuote(String sym)
throws RemoteException ;

}

public class QuoteBean implements
{

public float getQuote(String sym)
{ … }

}

JAX-WS 2.0 Code
@WebService public interface

StockQuote {

public float getQuote(String sym);

}

@WebService public class
QuoteBean implements
StockQuote {

public float getQuote(String sym)
{ ... }

}

This shows an example of the JAX-WS programming model shown side by side with JAX-
RPC. Notice the removal of the remote interface; this is consistent with what is coming in
Java™ EE 5 in the EJB support. Add to that the Web service annotation to denote that
this will be exposed as a Web service. Similar to the rest of Java EE 5, the service
endpoint interface is not required to be specified.

WASv61_WSFP_JAX-WS_Development.ppt Page 5 of 21

IBM Software Group

5

JAX-WS development © 2007 IBM Corporation

Development process

� Write the Web service class
� Generate artifacts from scratch

� Generate artifacts using WSDL

� Compile the Web service

� Deploy the Web service

� Create a client
� New options for dynamic or static clients

� Write code to call methods against the client

� The rest is handled by the runtime
� No writing or parsing SOAP messages

The development process for creating a Web service has not changed much with the
introduction of JAX-WS. Begin by creating a Web service class, either from scratch, or
from a WSDL document using WSImport. Next, compile the Web service. Then deploy
the Web service to a feature pack for Web services enabled WebSphere Application
Server V6.1 server. A proxy that can be used by clients can be created using WSImport,
client code can be written to call methods against the proxy. The rest is handled by the
runtime, neither the client code nor the provider code is required to write or parse SOAP
messages.

WASv61_WSFP_JAX-WS_Development.ppt Page 6 of 21

IBM Software Group

6

JAX-WS development © 2007 IBM Corporation

Tools

� Command Line Tools
� WSImport (top down) generates:

� Beans
� Service Client
� SEI
� Wrappers (if necessary)
� Object Factory and package information (JAXB)

� Must specify –keep flag to generate source

� WSGen (bottom up) generates:
� WSDL (with –wsdl flag)
� Wrappers (if necessary)

�Application server toolkit and IBM Rational® Application
Developer support also available

JAX-B 2.0

JAX-WS 2.0

There are two main command line tools for working with JAX-WS to develop Web
services. WSImport is a top down development tool that will create the necessary beans,
service client, service endpoint interface, and wrappers from a provided WSDL file. To
generate source materials specify the –keep flag when running the WSImport command.
The WSGen command will create a WSDL document and wrappers when needed from
Java code with the proper Web service annotations. There is also support for developing
JAX-WS Web services in the Application Server Toolkit and the IBM Rational Application
Developer.

WASv61_WSFP_JAX-WS_Development.ppt Page 7 of 21

IBM Software Group

7

JAX-WS development © 2007 IBM Corporation

Deployment

� Clients and services can be deployed without WSDL
� ?WSDL will generate WSDL when possible

� WSDL cached after first touch

� In absence of WSDL, configuration is based on annotations and
defaults

� No changes to web.xml are required, there are no Web Services
specific deployment descriptors

� Must edit WSDL location generated by WSImport
� Use relative file location

� @WebService(wsdlLocation=“WEB-INF/wsdl/AddressBook.wsdl”)

Web services and clients can be deployed with a WSDL document based on the JAX-WS
specification. The ?WSDL command will generate a WSDL document when possible.
When a Web service is first accessed, a WSDL will be created and cached for future use
so that a WSDL does not need to be generated for each subsequent call. If a WSDL is
not available, the configuration for the Web Service is based on default values and
information stored in the service’s annotations. It is important to edit the files generated by
WSImport to use a relative file location for the WSDL location annotation.

WASv61_WSFP_JAX-WS_Development.ppt Page 8 of 21

IBM Software Group

8

JAX-WS development © 2007 IBM Corporation

Packaging

� Standard .jar file packaging

� Provider side
�Bundle JAX-WS “annotated” classes, WSDL, and XSD

schema within a WAR module

� Client side
�Bundle JAX-WS “annotated” classes, WSDL, and XSD

schema within any J2EE module

� Thin client
�Place JAX-WS “annotated” classes , WSDL, and XSD

schema along with the stand-alone thin client Web
Services runtime within the class path or same .jar

JAX-WS Web services are packaged as simple jar files. On the provider side, the JAX-
WS annotated classes are bundled with the WSDL and XSD schema into a WAR module.
On the client side, the JAX-WS annotated classes are bundled with the WSDL and XSD
schema within a J2EE module. For the thin client, the stand-alone think client Web
services runtime must be included.

WASv61_WSFP_JAX-WS_Development.ppt Page 9 of 21

IBM Software Group

9

JAX-WS development © 2007 IBM Corporation

Dynamic APIs

� Fundamentally different from JAX-RPC dynamic APIs
� Messaging based as opposed to operation based

� Accepts multiple payload formats (payload vs. message mode)

� Client - dispatch
� Messaging based as opposed to operation based
� Does not require WSDL

� Supplied WSDL will only be used for endpoint address

� Policy set (for dispatch) is only at service level (not operation level)

� Service - provider
� Requires WSDL for deployment

� Runtime (Axis2) needs information to route based on operation

� Similar to Dispatch, but no direct JAXB option
� Use javax.xml.transform.Source or SAAJ SOAPMessage to access content

The dynamic APIs provided with JAX-WS are fundamentally different from the JAX-RPC
dynamic APIs. The JAX-WS dynamic APIs are message based rather than operation
based, and accepts multiple payload formats, a payload and message mode. On the
client side, there is no requirement for a WSDL, if a WSDL is supplied it will only be used
for the endpoint address. Policy sets can only be applied at the service level and not at a
more fine-grained operation level. The provider side does need a WSDL for deployment,
as the runtime will use the information to route requests based on the operations that are
called.

WASv61_WSFP_JAX-WS_Development.ppt Page 10 of 21

IBM Software Group

10

JAX-WS development © 2007 IBM Corporation

Asynchronous operations

� Asynchronous callback and polling models available
� Available for dispatch and proxy clients
� Callbacks not supported within the EJB container

� Each request requires a new instance of the callback object
� Polling available in all clients

� Only polls the client, does not poll the endpoint and pull the response

� Default wire level behavior is synchronous
� Must set property to enable:

“com.ibm.websphere.webservices.enable.async.mep”
� Automatically enables WS-Addressing

� Requires binding customization to generate asynchronous
mappings

� Available with a check box in AST

There are also asynchronous callback and polling models available for the dispatch and
proxy based clients. Callbacks are not supported within the EJB container at this time. By
default, the wire level behavior is synchronous; the property specified above must be
enabled to turn on asynchronous behavior on the wire. This will also enable WS-
Addressing by default, as this is required for asynchronous behavior. With the application
server toolkit, binding customizations to generate asynchronous mappings can be enabled
with a check box.

WASv61_WSFP_JAX-WS_Development.ppt Page 11 of 21

IBM Software Group

11

JAX-WS development © 2007 IBM Corporation

Annotations

� JAX-WS defines annotations for more easily developing
Web services

import javax.jws.WebService;

@WebService()
public class HelloWorld {

private String message = new String("HelloWorld");

public void HelloWorld() { }

@WebMethod()
public String sayHello() { return message }

}

Some of the annotations used come from JSR-181 rather than the JAX-WS specification.
JAX-WS defines its own set of annotations to cover the portions that are not addressed in
JSR-181. When combined they allow a developer to specify configuration data within the
source files. This can simplify the development process.

WASv61_WSFP_JAX-WS_Development.ppt Page 12 of 21

IBM Software Group

12

JAX-WS development © 2007 IBM Corporation

Handlers

� Protocol handlers
� Similar to existing JAX-RPC handlers, classes implement

javax.xml.ws.handler.soap.SOAPHandler interface

� Access the message as SAAJ SOAPMessage using MessageContext

� Can only be run with SOAP 1.1 or SOAP 1.2 protocols

� Logical handlers
� Classes implement javax.xml.ws.handler.LogicalHandler interface

� Access the message as javax.xml.transform.Source using
LogicalMessageContext

� Can be applied to all bindings

� Logical handlers run before protocol handlers on the client and after
protocol handlers on the server

The JAX-WS specification details support for handlers is similar to JAX-RPC. The Feature
Pack for Web services supports two types of handlers for JAX-WS, protocol handlers and
logical handlers. The protocol handler is similar to JAX-RPC handlers, and accesses the
message as a SAAJ base SOAPMessage with the MessageContext. Logical handlers use
a LogicalMessageContext to access the message instead, and can be applied to all
binding types. Logical handlers are designed to run before protocol handlers on the
clients and after protocol handlers on the provider side.

WASv61_WSFP_JAX-WS_Development.ppt Page 13 of 21

IBM Software Group

13

JAX-WS development © 2007 IBM Corporation

Migration and coexistenceMigration and coexistence

Section

The next section explains migration and coexistence of JAX-RPC and JAX-WS Web
services.

WASv61_WSFP_JAX-WS_Development.ppt Page 14 of 21

IBM Software Group

14

JAX-WS development © 2007 IBM Corporation

Migration

� JAX-WS 2.0 is more than JAX-RPC 2.0

� Backwards compatibility for artifacts was not a goal of the
JAX-WS specification
� Instead JAX-WS uses JAX-B to bind to Java artifacts

� There is no automatic migration from JAX-RPC to JAX-WS
�JAX-RPC applications wanting to use JAX-WS features will need

to be rewritten

� Web services based on the JAX-RPC 1.1 specification will
run normally in an environment where the feature pack for
Web services is installed

The JAX-WS specification was not designed with backwards compatibility of artifacts as a
goal. Due to this, there is no automatic or simple migration from JAX-RPC to JAX-WS.
JAX-RPC applications that need to use these new technologies will have to be rewritten
based on the JAX-WS specification. In an environment with the feature pack for Web
services installed, JAX-RPC applications will still function normally, but cannot take
advantage of the new JAX-WS based features.

WASv61_WSFP_JAX-WS_Development.ppt Page 15 of 21

IBM Software Group

15

JAX-WS development © 2007 IBM Corporation

Problem determinationProblem determination

Section

The next section discusses problem determination of a JAX-WS application.

WASv61_WSFP_JAX-WS_Development.ppt Page 16 of 21

IBM Software Group

16

JAX-WS development © 2007 IBM Corporation

Problem determination

� Validation for Web services clients and endpoints is done as the
applications start

� In some scenarios, if the annotation values are not correct, an exception
will be logged and the application will not start

� TCPMON still available for use from the JAX-RPC thin client bundle
� (WAS_HOME/runtimes/com.ibm.ws.webservices.thinclient_6.1.0.jar)

� Trace strings
� org.apache.axis2.*=all (Axis2 and JAX-WS open source code)
� com.ibm.ws.websvcs.*=all (IBM Web Services Integration layer)

� Trace can be applied to server environment and the thin client
environment.

Certain considerations should be taken when diagnosing problems related to JAX-WS
based Web services. When a client or service written with JAX-WS annotations is started,
those annotations will be validated by the runtime. If there are problems with the form or
content of the annotations the application may not start properly and errors may be
logged. A TCP monitoring tool can be used with JAX-WS services to view the contents of
the messages being sent, similar to JAX-RPC. Specific trace strings that can be used to
gather detailed information about JAX-WS problems are shown above.

WASv61_WSFP_JAX-WS_Development.ppt Page 17 of 21

IBM Software Group

17

JAX-WS development © 2007 IBM Corporation

SummarySummary

Section

Following is the summary of the presentation.

WASv61_WSFP_JAX-WS_Development.ppt Page 18 of 21

IBM Software Group

18

JAX-WS development © 2007 IBM Corporation

Summary

� The JAX-WS specification provides enhancements and
new features to Web services development
�Easier development
�Annotations
�Asynchronous operations

� New tools options to create JAX-WS Web services

The new JAX-WS specification provides key new features for developing Web services,
such as an annotation based programming model and support for asynchronous
operations. The Feature Pack for Web services also provides a number of new tools
options for creating JAX-WS based Web services.

WASv61_WSFP_JAX-WS_Development.ppt Page 19 of 21

IBM Software Group

19

JAX-WS development © 2007 IBM Corporation

References

� https://jax-ws.dev.java.net/

� http://www.ws-i.org

WASv61_WSFP_JAX-WS_Development.ppt Page 20 of 21

IBM Software Group

20

JAX-WS development © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject= Feedback about WASv61_WSFP_JAX-WS_Development.ppt

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv61_WSFP_JAX-WS_Development.ppt Page 21 of 21

IBM Software Group

JAX-WS development © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM Rational WebSphere

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, Other Countries, or both.

Access, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

EJB, J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

21

