

Chapter 7

Assembly in WebSphere Integration Developer
In this chapter, you will review the SCA modules created for this scenario. Instead of walking
step-by-step through the definition of BPELs, services interfaces, and your mock backend
service implementations, you will start by importing a project interchange that contains several
SCA modules. Then you will walk through these modules and see how it works.

Importing the Loan Origination SCA modules

1. Select File -> Import … from the main menu.

2. Select Project Interchange. Click Next.

3. Browse to the location of LoanOriginationSCAModules.zip. The set of projects in the zip
show up. Click Select All and then Finish.

Exploring the Loan Origination assembly

1. Open the assembly diagram for the LoanOrigination SCA module.

This module exports the Loan Origination process and plays the role of the Business Application
module. The process has one partner link for each business service that was modeled in the
Fabric authoring space and these are wired to dynamic assembly components. At each step in

the process, the dynamic assembly component is invoked. The dynamic assembler will use
business policies and other configuration to dynamically select and invoke the most appropriate
process variation to select for each business service. Wired to each dynamic assembler is a
Java component that implements the ContextExtractor interface. These components are
invoked by the dynamic assembler to provide context elements needed for evaluating policies.
Notes attached to the context extractors are used to indicate the context provided for each
dynamic assembler. You will cover the steps for defining context extractors in the next chapter.

2. Double click the LoanOrigination process to open the BPEL editor.

After an initial receive step, the Check Credit action invokes the check credit partner with a loan
application and receives the loan application back with a credit score filled in.

The next invokes the review collateral partner with the loan application. The response is an
updated loan status which is saved to the loanStatus variable. The following assign action
updates the loan application with the value of loanStatus returned from the collateral review.

The final review step is similar in that the request is again a loan application and the response is
an updated loanStatus.

The final action in the process invokes the notify customer partner with the loan application. The
NotifyCustomer interface is modeled as a one-way operation.

Exploring the CheckCredit assembly

1. Open the assembly diagram for the CheckCredit module.

The ChooseCreditCheck dynamic assembly component uses policies to dynamically bind to the
most appropriate of three backend credit report services that implement the GetCreditReport
interface. Note that no context extraction is needed here. In this case, the necessary context is
established by the CreditCheck dynamic assembler in the loan origination process. At runtime,
the necessary context elements are propagated so that they can be accessed anywhere within
the automated credit check process variation.

2. Double-click to open the AutomatedCreditCheckProcess.

The interface to this process takes a loan application and returns a loan application with a credit
score. The process is used to create a CreditReportRequest, invoke the getCreditReport
reference partner, and update the loan application with the credit score from the
CreditReportResponse.

3. Open the assembly diagram for the BetterFinancialsBackend module.

The BetterFinancialsBackend module provides simple mock implementations of the three
backend credit services exposed through Soap/HTTP exports. To make it easier to distinguish
which service is selected, each mock implementation returns a different fixed credit score. The
following table shows the credit score returned by each implementation:

Credit Service Mock Credit Score

Trans Union 500

Experian 600

Internal Credit Check 700

Exploring the Review Collateral assembly

1. Open the Assembly Editor for the ReviewCollateral SCA Module.

This module provides implementations of two process variations for the Review Collateral
business service. Although this example and others in this guide place variations in the same
module, consider putting each variation in its own module. That way, a new service can be
introduce or an old one modified by deploying a new or updated module for that one process
variation.

The No Collateral Review implementation will update the loanStatus to the INPROGRESS state
if no loan status is provided.

The human collateral review launches a human task for someone to review the collateral and
update the status of the loan. The human task is configured so that the work can be performed
in the Business Process Choreographer.

Exploring the Final Review assembly

1. Open the assembly editor for the Final Review SCA module.

This module provides implementation for the human and automated process variations for the
Final Review business service.

The automatic underwriting Java implementation will set the loan status to APPROVED unless
the loan has already been rejected or flagged for needing additional information.

The manual underwriting human task will allow an underwriter to review the loan and determine
the final status.

Exploring the Notify Customer assembly

1. Open the assembly diagram for the NotifyCustomer SCA module.

The Notify Customer SCA Module provides implementations for both the human and automated
process variations of the Notify Customer business service.

The java implementation of AutomaticNotification “notifies” the customer by printing the
customer name and final loan status as a system out message that opens in the server console
at runtime.

The human implementation will create a human task so that customers can be directly
contacted by a bank representative.

