
WCSv602_Portal_Integration.ppt Page 1 of 34

®

IBM Software Group

© 2007 IBM Corporation

Updated May 15, 2007

WebSphere Commerce Portal Integration

Portlet Programming Model

WebSphere® Commerce Feature Pack 2

Welcome to the WebSphere Commerce Feature Pack 2 Portal Integration portlet
programming model presentation.

WCSv602_Portal_Integration.ppt Page 2 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Agenda

�Architecture overview

�Programming model
�MVC style

�Customization

This presentation discusses the architecture overview, the MVC programming model and
customization details.

WCSv602_Portal_Integration.ppt Page 3 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

WebSphere Commerce Portal Integration
enhancements
� Feature enhancements
�Deploy a standard SOA based solution
�JSR-168 compatibility
�Support for portlet-to-portlet communication
�Leverage the portlet tag library
�Allow easier customization

�Platform support for WebSphere Commerce V6
�WebSphere Portal V6
�Rational® Application Developer V7

As part of the integration roadmap between WebSphere Commerce and WebSphere Portal, WebSphere
Commerce has released an enhancement to WebSphere Commerce V6. The key change in this major
revision is to align with the IBM® SOA programming model by having portlets as the presentation layer, to
WebSphere Commerce business functionality. The goal is to enable customers to leverage the capabilities
provided by WebSphere Portal Server, while accessing information such as products and orders in
WebSphere Commerce, through Web services. Other key enhancements for WebSphere Commerce Portal
integration include:

1. JSR-168 compatibility which enables you to build portlets that are compliant to the JSR-168 standard,

2. Portlet-to-portlet communication where portlets written to access WebSphere Commerce functionality can
use portlet-to-portlet communication provided by such portlet containers as WebSphere Portal,

3. A portlet tag library which allows your portlets to support linking, and

4. WebSphere Commerce functionality exposed as services invoked by portlets.

Platforms supported by WebSphere Commerce Portal solution are WebSphere Portal V6 with Rational
Application Developer V7 development environment and WebSphere Commerce V6 with Rational
Application Developer V6 development environment. Additionally, LDAP configuration is provided with this
platform support.

WCSv602_Portal_Integration.ppt Page 4 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

WebSphere Portal presentation layer

EJB Container (WebSphere Commerce Business Logic)

Web Container (Struts)

(Controller)

WebSphre

Commerce

Servlet

(View)

Java Server

Pages

(Model)

Commands and Java Beans

Back Office

Servers

Data

Sources

Portlet Container (WebSphere Portal)

(View)

Java Server

Pages

Client

Libraries
2

(Controller)

WebSphere

Commerce

Portlet

Web Broswers

Network

WebSphere Commerce supports multiple presentation layers; you can use an appropriate presentation layer
based on your business requirements. For example, if your business processes are represented by
WebSphere Commerce business logic and data, then Struts is an appropriate choice for your presentation
layer. However, if you want to aggregate business processes from WebSphere Commerce with those from
other non WebSphere Commerce applications, then it is appropriate to use WebSphere Portal for the
presentation layer.

Both the Struts and WebSphere Portal presentation layers follow the model view controller (MVC) design
pattern. The consequent separation of the presentation logic and the business logic enables a Web designer
to develop the presentation layer at the same time as an application developer implements business logic.

In the Struts framework, a browser request is routed to a servlet that acts as a controller. Using local Java™
calls, the controller calls the model for processing. The controller then dispatches the appropriate view to
render data. The model encapsulates all business logic implemented using the command pattern. The JSP™
pages retrieve data from the database using data beans, and then format the output.

In the WebSphere Portal framework, the browser request is routed to a portlet that acts as a controller. The
portlet calls client libraries, then the client library sends a service request to WebSphere Commerce business
logic for processing. When the portlet renders the data, it dispatches to a JSP page in the portlet container.
The JSP pages use tags that delegate to the client libraries to retrieve data from the WebSphere Commerce
system.

WCSv602_Portal_Integration.ppt Page 5 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

WebSphere Portal client architecture

� Architecture follows MVC pattern:
�processAction calls WebSphere Commerce (Update) commands

through Web services
- Hides internals with façade

�doView makes calls to the data source to (Read) retrieve content
- Renders JSPs in the WebSphere Portal Server not the WebSphere Commerce Server

� Single portlet can render various displays:
�Calls different tasks on a business façade

The key change in the architecture is to render content in the WebSphere Portal server
instead of on the WebSphere Commerce server. Another goal is that portlets have to be
written according to the portlet development guide without any need for a special
WebSphere Commerce-Portal framework. There should be no WebSphere Commerce-
Portlet base class which developers must extend. The goal is to treat WebSphere
Commerce functionality as services with portlets being the window into those services.

Requests are served by the WebSphere Portal Server which uses a Web services style
interface to perform create, read, update and delete operations against the WebSphere
Commerce system. Contextual information is managed in the Portal server to maintain
information such as language and currency consistently across request in a session.

The update calls from WebSphere Portal to the WebSphere Commerce server need to be
fronted using a façade to hide the communication mechanism. These update calls only
occur in the processAction method of the portlet. Helper APIs need to be provided to aid
in invoking services on the WebSphere Commerce server. These helper APIs should
include libraries to help in managing contextual information and accessing business
services such as catalog and order. To display content, the doView calls dispatch to a
JSP which retrieve WebSphere Commerce content using a tag library.

A portlet can call many different tasks. Each action invokes a business task on a business
façade.

WCSv602_Portal_Integration.ppt Page 6 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

MVC portlet components

� MVC portlet

� Configuration registry

� Event handler

� Portlet JSP

� getData tag

� Client library

WebSphere Commerce has provided an optional integration framework intended to reduce development
effort when calling WebSphere Commerce services from your portlet. You do not need to use the framework
to make use of the client libraries and the WebSphere Commerce foundation tag library in your portlet. The
diagram shown depicts the interactions between the key pieces of WebSphere Commerce Server and
WebSphere Portal Server. This slide describes the first two pieces of the framework.

Portlet
A portlet is similar to a servlet, except that it has parts that contribute to the MVC design pattern. MVCPortlet
is a generic implementation of the MVC pattern that allows portal administrators to set up one or more
portlets, each with its own configuration, to call various WebSphere Commerce business services.

Portlets have multiple states, view modes, and event and messaging capabilities. Portlets run inside the
portlet container of the WebSphere Portal Server, similar to the way a servlet runs on an application server.
The portlet container provides a runtime environment where portlets are instantiated, used, and then
destroyed. Portlets rely on the WebSphere Portal infrastructure to access user profile information, participate
in window and action events, communicate with other portlets, access remote content, look up credentials,
and store persistent data.

Configuration registry
The portlet configuration registry is a cached version of configurations related to all portlet operations, such
as portlet actions and portlet renders. These static configurations are defined in XML files that are packaged
as part of the WebSphere Commerce sample portlet application. You can find these files on the file system
after you install the portlet application to the WebSphere Portal Server.

WCSv602_Portal_Integration.ppt Page 7 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

MVC portlet components (cont.)

� MVC portlet

� Configuration registry

� Event handler
�Action

�Render

� Portlet JSP

� getData tag

� Client library

This slide describes the event handler piece of the framework.

Portlets and servlets have different processing and rendering sequences. A servlet does all of its processing
in the service() method. A portlet, on the other hand, uses two-phase processing that is split between an
action phase and a render phase. This split is necessary to accommodate communication between portlets
before rendering output in the service stage. The action phase is guaranteed to be completed before a portlet
is called to render. The WebSphere Commerce and WebSphere Portal integration framework is designed in
a flexible way so that each portlet request can be handled differently using an event handler. For each action
event and render event, you can define a corresponding event handler in the portlet MVC configuration file.
Although the render phase is always called, the action phase may not be called in certain circumstances.

Portlet Action Handler
This handler, MVCPortletActionHandler, retrieves two properties, clientLibrary and clientMethod, and then
calls the method, passing a parameter map that is composed of name-value pairs given in the URL. When
the client library returns a response, this handler takes the response name-value pair that was returned from
the client library and adds it to the URL. These are added as render parameters so that the context and core
business data are not lost in an event of a page refresh. A page refresh issued from the portlet container
does not involve processAction(), so certain business data might be lost as a result of a refresh request.

Portlet Render Handler
This handler, MVCPortletRenderHandler, does not call WebSphere Commerce services. Instead, it checks
for the current state and mode of the portlet to determine the appropriate JSP file path to be used when
calling the request dispatcher for rendering.

WCSv602_Portal_Integration.ppt Page 8 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

MVC portlet components (cont.)

� MVC portlet

� Configuration registry

� Event handler

� Portlet JSP

� getData tag

� Client library

This slide describes the last three pieces of the framework.

Portlet JSP file
The Portlet JSP file is a view template for displaying business data and getting inputs from
the portal user. Special UI tags, such as portlet tags and WebSphere Commerce
foundation tags, are used on these pages to avoid inline JSP Java coding. Portlet tags are
provided by WebSphere Portal to access information specific to the portal environment,
whereas WebSphere Commerce foundation tag library tags are for retrieving populated
service data objects from WebSphere Commerce services.

Client library
A client library is a WebSphere Commerce Component Service interface for client side
invocation. Client libraries should not be aware of any artifacts specific to WebSphere
Portal, such as Portlet Session and Credential Service Vault. Upon each invocation,
business objects, such as BusinessContextType and AuthenticationCallbackHandler, are
passed to the interface so that it can hand over specific information to the service binding
layer.

WebSphere Commerce foundation tag library
A getData action tag is provided as part of the WebSphere Commerce UI runtime. It
retrieves populated service data objects from WebSphere Commerce services.

WCSv602_Portal_Integration.ppt Page 9 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Framework interaction

� Action (Update)
�1,2,3,4,5

� Render (Read)
�1,2,6,7,8,5

Using the WebSphere Commerce Portlet provided, a portlet developer can create or remove actions and
renders through configurations. The following description summarizes the interactions:

1. The request from the WebSphere Portal user is directed to the presentation layer in the WebSphere
Portal Server’s portlet container.

2. The portlet container then calls the processAction() method in the WebSphere Commerce Portlet where
the definition of the requested action is looked up from the MVC configuration stored in the Configuration
Registry.

3. The designated PortletActionHandler for this portlet action retrieves the client library interface definition
and the required parameters from the Configuration Registry.

4. The PortletActionHandler gathers the parameter map from the request, along with the required business
context and authentication callback handler (which can be acquired through the credential plug-in), and
passes them to the pre-configured client library method defined in the Configuration Registry.

5. The client library retrieves the required request parameters from the parameter map and converts them
into a message which is then forwarded to a WebSphere Commerce service on WebSphere Commerce
Server. The designated WebSphere Commerce component performs the requested business operation.
After the operation is completed, a response is returned to the client library. The PortletActionHandler
analyzes the response and generates the required render parameters for the upcoming render request. In
the event of an exception or service fault received from the client library, the PortletActionHandler displays
the error view.

6. The Portlet Container generates another render request and calls the render method in the WebSphere
Commerce Portlet for rendering a page back to the WebSphere Portal user. The Portlet Container calls
the MVCPortlet's render method where the definition of the requested render is looked up from the MVC
configuration stored in the Configuration Registry.

7. The designated PortletRenderHandler retrieves the JSP file path from the Configuration Registry and
assigns the portlet JSP page to the request dispatcher for rendering.

8. The JSP file retrieves data from the WebSphere Commerce tag library.
9. The WebSphere Commerce tag library calls the client library.

WCSv602_Portal_Integration.ppt Page 10 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Customization and extensibility
� MVC style – using the provided WebSphere Commerce

MVCPortlet class
�Uses generic implementation of the MVC pattern
�Allows portlet designers to set up portlets to call WebSphere

Commerce services

�Reduces code redundancy
�Maintains consistent behavior across all WebSphere Commerce

portlet actions

� Web service style – using WebSphere Portal general
programming techniques
�Invokes back-end WebSphere Commerce Web services using client

library
�Requires portlet developer to write more code and configuration for

any customization logic

There are two main approaches to Customizing WebSphere Commerce Portal integration:

1. The MVC style, which uses the provided WebSphere Commerce MVCPortlet class or

2. The Web service style, which uses WebSphere Portal general programming techniques

For the MVC style, the MVCPortlet, is a generic implementation of the MVC pattern. It
allows you to set up one or more portlets, each with its own configuration, to call various
WebSphere Commerce services. This programming pattern greatly reduces code
redundancy and maintains a consistent behavior across all WebSphere Commerce
portlet actions.

For the Web service style, a portlet can invoke the backend Web services provided by
WebSphere Commerce or a vendor directly without the need for a client library.
Although this model is less restrictive than the previous one, you have to write more
code and configuration for any customization logic.

WCSv602_Portal_Integration.ppt Page 11 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

MVC style programming pattern

� MVC portlet assets:
�MVC configuration files – portlet-config.xml
�Event handlers – action handler and render handler

�Portlet JSPs

� WebSphere Commerce services assets:
�getData tag – get-data-config.xml

�Client libraries

With the MVC style, there are several customizable assets, described in the next two slides:

Portlet Action and Render Configuration - Each portlet can have one or more MVC configuration files and
they are loaded in the order that is specified in the portlet deployment descriptor. In each MVC configuration
file, an action definition is required to define how the request can be mapped into a WebSphere Commerce
service request. A render definition might also be required, depending on the nature of the request.

Event Handlers - Although the MVC configuration allows you to define any customized event handler, the
use of two generic event handlers is recommended: 1) a generic portlet action handler,
MVCPortletActionHandler, which calls client libraries through configurations specified in the MVC
configuration file and 2) a generic portlet render handler, MVCPortletRenderHandler, which returns the
proper portlet JSP page according to the current portlet mode.

Portlet JSP file - The Portlet JSP file is a view template for displaying business data and getting inputs from
the portal user. These JSP files contain markup tags that provide a consistent, clean, and complete user
interface. The portal page is displayed using skins and themes defined by the portal designer or
administrator. For portlets to appear integrated with an organization's portal or user's customized portal, they
should generate markup that invokes the generic style classes for portlets, rather than using tags or
attributes to specify colors, fonts, or other visual elements. Portlets are allowed to render only markup
fragments, which are then assembled by the portlet framework for a complete page. Portlet output should
contain complete, well-structured, and valid markup fragments. This helps to prevent the portlet's HTML code
from corrupting the portal's aggregated HTML code.

WCSv602_Portal_Integration.ppt Page 12 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

MVC style programming pattern (cont.)

� MVC portlet assets:
�MVC configuration files – portlet-config.xml
�Event handlers – action handler and render handler

�Portlet JSPs

� WebSphere Commerce services assets:
�getData tag – get-data-config.xml

�Client libraries

WebSphere Commerce foundation tag library - A <wcf:getData> action tag is provided
as part of the WebSphere Commerce foundation tag library. This tag retrieves populated
service data objects from the WebSphere Commerce services.

WebSphere Commerce services - WebSphere Commerce provides services that have
been created using existing WebSphere Commerce controller commands and data beans,
fronted by a component facade interface. These services can be used on the portlet using
the WebSphere Commerce foundation tag library.

Client Library - Each WebSphere Commerce service module provides a client library
that is responsible for building the messages to be sent to the WebSphere Commerce
services. Upon each invocation, business objects, such as BusinessContextType and
AuthenticatoinCallbackHandler, are passed to the interface so that it can hand over
specific information to the service binding layer.

WCSv602_Portal_Integration.ppt Page 13 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Action example – portlet-config.xml

� ChangePersonalInformation action :
�Uses generic action handler:

MVCPortletActionHandler

�Calls client library:
MemberFacadeClient.updatePerson()

This is an example of the Change Personal Information action.

WCSv602_Portal_Integration.ppt Page 14 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Action example – Portlet JSP

This is an example of the Change Personal Information action URL on the portlet JSP.

WCSv602_Portal_Integration.ppt Page 15 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Render example – portlet-config.xml

� ChangePersonalInformation render :
�Uses generic render handler:

MVCPortletRenderHandler

�Forwards to portlet JSP:
/member/ChangePersonalInformationDisplay.jsp

This is an example of the Change Personal Information render.

WCSv602_Portal_Integration.ppt Page 16 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Render example – Portlet JSP

This is an example of the getData tag used on the Change Personal Information JSP.

WCSv602_Portal_Integration.ppt Page 17 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Render example – get-data-config.xml

This is an example of the find current person expression builder definition.

WCSv602_Portal_Integration.ppt Page 18 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Render example – GetPerson request

This is a snapshot of the data area of the BOD from the previous example.

WCSv602_Portal_Integration.ppt Page 19 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

getData tag example – Get expression builder

� Returns a list of SDOs – all products in a given category

� Paging information – varShowVerb, maxItems, recordSetStartNumber

This is another getData tag example which returns a list of SDOs, along with paging
information.

WCSv602_Portal_Integration.ppt Page 20 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Event handlers

� PortletActionHandler, PortletRenderHandler interfaces
� Can be customized by portlet developer

� BusinessContextType, CallbackHandler objects
� Must gather additional runtime information:

� a business context object

� an authentication callback handler object

� Stored in portlet session and shared across with all portlets
� Passed to downstream consumers, such as getData tag, as

request attributes:
SessionHelper.SESSION_ATTRIBUTE_BUSINESS_CONTEXT_TYPES =
"com.ibm.commerce.foundation.business_context“

SessionHelper.SESSION_ATTRIBUTE_CALLBACK_HANDLER =
"com.ibm.commerce.foundation.callback_handler"

In addition to using these generic event handlers, the MVCPortlet allows the portlet
developer to customize both the action handler and the render handler.

To code a portlet action request handler, you need to provide additional information.
When calling a client library, two mandatory objects are required - a business context
object and the authentication callback handler. Both are discussed in subsequent slides.

WCSv602_Portal_Integration.ppt Page 21 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Authentication callback handler
� Two types of authentication between WebSphere Portal and WebSphere Commerce:

�Basic authentication

� Requires global security enabled with LDAP on WebSphere Portal only

� Recommended for production environment

�Simulated single sign-on

� Does not require global security enabled and no LDAP setup for WebSphere
Portal and WebSphere Commerce

� Recommended for development environment only

� Generic authentication callback handler provided to perform simulated single sign-on

� Plug-in utility provided to manage callback handler object in the portlet session:

AuthenticationCallbackHandler authenticationCallbackHandler = SessionHelper
.getAuthenticationCallbackHandler(portletRequest, contextId);

Regardless of which authentication method you choose to use, the client library and
WebSphere Commerce services should not be aware of the method when interacting with
the portlet in the Portal environment. A callback handler is used to generate an identity
token for use in calling a WebSphere Commerce service client library. The idea is to have
the underlying service binding layer process the single sign-on request against the
WebSphere Commerce server on behalf of the client without knowing the technical details.

In order to retrieve an existing authentication callback handler object from the portlet
session, you can write code to call a special helper class using a contextId as shown in
the slide.

WCSv602_Portal_Integration.ppt Page 22 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Business context

� Used to represent business contextual information defined for the portlet

� Plug-in utility is provided to manage this business context object in the
portlet session:

BusinessContextType businessContextType = SessionHelper
.getBusinessContextType(portletRequest, contextId);

A BusinessContextType object is used to represent the business contextual information
defined for the portlet. This contextual information should be set into the object for
synchronizing with WebSphere Commerce services.

In order to retrieve an existing business context object from the portlet session, you can
write code to call a special helper class using a contextId as shown in the slide.

WCSv602_Portal_Integration.ppt Page 23 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Calling client library example

� The following is an example of calling into the
CatalogFacadeClient library:

� Upon application exception:

Here is an an example of how to call the client library, passing the business context object
and authentication callback as arguments.

WCSv602_Portal_Integration.ppt Page 24 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Authorization

�WebSphere Portal Server
�Portlet resource level access control

�WebSphere Commerce Server
�WebSphere Commerce fine grain access control

Because users sign on to the WebSphere Portal server and Portal performs the
authentication, you should still use WebSphere Portal's resource level access control to
restrict access on Portal pages, portlets, menu options and so on. However, when it
comes to WebSphere Commerce related content, you should use back-end WebSphere
Commerce fine-grain access control.

WCSv602_Portal_Integration.ppt Page 25 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Customization overview

�Presentation layout
�Look and feel – theme, skin

�Portlet arrangement – page layout

�Portlet design
�MVC portlet and WebSphere Commerce

� MVC configuration

� SOI interfaces – client library

� Portlet JSP

�Other JSR 168 portlets

Presentation and content are two aspects you should consider when re-using and
customizing the sample portlets. With presentation, you should make use of WebSphere
Portal's themes and skins to control the portlet frame decoration and the design of the
overall Portal page. Also, by using the appropriate resource level access control, you can
allow or restrict your Portal users from changing their own page layout. With content, in
terms of what to display in the Commerce portlets, you have the option of re-using the
default portlet features or building your own using the MVC style programming model.

WCSv602_Portal_Integration.ppt Page 26 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

MVC portlet – sample portlet features
MVC Portlet Feature Configurations:
1) Catalog
2) Order
3) Member

1

1

1

3

2

2

2

The following portlet samples make up the WebSphere Commerce portal: My Account,
Catalog, Cashier, Search, My Order, Product and My Cart. The diagram displays the
shopping flow for an authenticated user in the WebSphere Commerce portlets.

WCSv602_Portal_Integration.ppt Page 27 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

MVC portlet – portlet.xml

If seven ports are too many and you want to combine a few features into a single portlet;
all you need to do is include the set of portlet features that you want inside of the portlet
Web module’s deployment descriptor as shown in the slide.

WCSv602_Portal_Integration.ppt Page 28 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

MVC portlet – MVC configuration

2

MVC Portlet Feature Configurations:
1) Catalog
2) Order
3) Member

1 3

The left of this diagram displays two portlets being used in a modified shopping flow for
anonymous users. The right of this diagram shows the location of the portlet-config.xml
file.

WCSv602_Portal_Integration.ppt Page 29 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Services provided
Catalog

Catalog Get Catalog details by ID
Get Catalog Details By Identifier
Get Master Catalog
Get All Catalogs

CatalogGroup Get CatalogGroup Summary By ID
Get CatalogGroup Summary By Identifier
Get CatalogGroup Details By ID
Get CatalogGroup Details By Identifier
Get CatalogGroup Merchandising Associations By ID
Get CatalogGroup Merchandising Associations By Identifier
Get Top Categories
Get Category With Children Categories
Get Category With Children CatalogEntries
Get Category With All Children

CatalogEntry Get CatalogEntry Summary By ID
Get CatalogEntry Details By ID
Get CatalogEntry Merchandising Associations By ID
Get CatalogEntry Merchandising Associations By PartNumber
Get CatalogEntry Components By ID
Get CatalogEntry Components By PartNumber
Get CatalogEntry Summary By PartNumber
Get CatalogEntry Details By PartNumber
Find CatalogEntries Summary By PartNumber
Find CatalogEntries Details By PartNumber
Find CatalogEntries Summary By Name
Find CatalogEntries Details By Name
Find CatalogEntries Summary By Description
Find CatalogEntries Details By Description

Order
Order Prepare Order

Submit Order
Delete Shopping Cart
Add Order Items
Update Order Items
Delete Order Items
Update Ship Info
Add Payment Instruction
Update Payment Instruction
Remove Payment Instruction

Find Current ShoppingCart
Find By Order Status
Get History Orders
Get Order By Id
Get Usable Shipping Info
Get Usable Payment Info

There are four services provided in this feature pack: Catalog, Order, Member and
Contract.

The Catalog services enable an external system, such as WebSphere Portal, to search
for Catalog related information in WebSphere Commerce.

The Order services provide shopping cart, order capture, order fulfillment, inventory, and
payment function support that can be utilized by WebSphere Portal.

WCSv602_Portal_Integration.ppt Page 30 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Services provided (cont.)
Member

Person Find Current Person
Find Person By UniqueId
Find Person By Distinguished Name
Register Person
Update Person
Add Address
Update Address
Delete Address
Register Person (for backend)
Update Person (for backend)
Add Address (for backend)
Update Address (for backend)

Organization Find Org By UniqueId
Find Org By Distinguished Name
Register Organization
Update Organization
Add Address
Update Address
Delete Address
Register Org (for backend)
Update Org (for backend)
Add Address (for backend)
Update Address (for backend)

Contract
Contract Get Contract By ID

Get Eligible Contract List

The Member services allow an external system, such as WebSphere Portal, to create,
update and search for Members (Organizations, Users, and Member Groups) in
WebSphere Commerce.

The Contract services provide the ability to retrieve all entitled contracts for a given user
in a store and retrieve the contract content by contract Id.

WCSv602_Portal_Integration.ppt Page 31 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Sample portlet JSPs
� Catalog

�CatalogDisplay
�TopCategoryDisplay, StaticCategoryDisplay, DynamicCategoryDisplay
�StaticProductDisplay, DynamicProductDisplay
�SearchDisplay

� Order
�OrderItemDisplay
�OrderCheckoutDisplay
�OrderConfirmationDisplay
�OrderStatusDisplay, OrderDetailDisplay

� Member
�AccountDisplay
�ChangePersonalInformationDisplay
�AddressBookDisplay, AddressDisplay
�AnonymousAddressDisplay

Here are a list of JSPs included in the WebSphere Commerce portlets.

WCSv602_Portal_Integration.ppt Page 32 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

References

�WebSphere Commerce Portal Integration
�http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.co

mmerce.base.doc/concepts/covwhatsnewinthisrelease.htm

For more information regarding WebSphere Commerce Portal Integration, visit the site
indicated in the presentation.

WCSv602_Portal_Integration.ppt Page 33 of 34

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WCSv602_Portal_Integration.ppt Page 34 of 34

IBM Software Group

© 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers

IBM Software Group

WebSphere Commerce Portal Integration © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers

