

IBM Software Group

®

WebSphere ® Commerce V6

Programming architecture

© 2008 IBM Corporation

Updated June 10, 2008

This presentation provides an overview of the WebSphere Commerce programming model
and architectural framework.

wcs60_ProgrammingArchitecture.ppt Page 1 of 24

IBM Software Group

2

Programming architecture © 2008 IBM Corporation

Unit objectives

�Outline the runtime architecture

�Describe the development model

�Introduce the use of Struts

�Introduce commands and the command API

This presentation introduces you to the runtime architecture and development model of
WebSphere Commerce. Because Struts is new to WebSphere Commerce, this unit
introduces the basics of Struts and the use of Struts in WebSphere Commerce.

wcs60_ProgrammingArchitecture.ppt Page 2 of 24

IBM Software Group

3

Programming architecture © 2008 IBM Corporation

WebSphere Commerce runtime architecture

Before examining how the WebSphere Commerce Server functions, it is useful to look at
the larger picture of the software components that relate to WebSphere Commerce. This
diagram shows a simplified view of these software products.

The Web server is the first point of contact for incoming HTTP requests for your e-
commerce application. In order to interface efficiently with the WebSphere Application
Server, it uses the WebSphere Application Server plug-in to manage the connections
between the two components.

The WebSphere Commerce Server runs within the WebSphere Application Server,
allowing it to take advantage of many of the features of the application server. The
database server holds most of your application's data, including product and customer
data. In general, extensions to your application are made by modifying or extending the
code for the WebSphere Commerce Server. In addition, you might have a need to store
data that falls outside of the realm of the WebSphere Commerce database schema within
your database.

Developers use Rational® Application Developer to create and customize storefront
assets, business logic and persistence logic. It is also used to test code and storefront
assets during development.

The WebSphere Commerce development environment uses a development database.
Developers can use their preferred database tools (including Rational Application
Developer) to make database modifications.

wcs60_ProgrammingArchitecture.ppt Page 3 of 24

IBM Software Group

4

Programming architecture © 2008 IBM Corporation

WebSphere Commerce application framework

In WebSphere Commerce, the server runtime defines the framework for handling
system and user requests, and performs the appropriate business logic to process the
requests. The framework is built using an MVC design pattern and provides an
environment that hosts business logic and handles persistence. It performs such tasks as
transaction management and session management.

WebSphere Commerce and WebSphere Application Server support a variety of security
mechanisms that can be used to protect access to data and other assets of the server.
The access control framework in WebSphere Commerce prevents users from executing
particular business logic. Not only does this access control framework provide a fine gain
control on business logic, it also provides the flexibility to restrict access on what data your
users are allowed to view and modify. Access control allows you to group commands by
access groups, assign different customer commands to different owners, assign access to
all owners, assign global site administrator access. By exploiting WebSphere Application
Server global security, access to Web resources such as servlets, Java™ Server Pages
(JSP) files, and Enterprise Java Beans (EJB) methods can be controlled for an additional
layer of security.

The command framework, an architectural component of the WebSphere Commerce
server runtime, provides the ability to invoke commands which represent different
business processes in the system. The command framework defines Java interfaces and
abstract implementations that business logic extends and implements. Also provided is a
set of base classes that commands can extend to simplify implementation.

The interactions between WebSphere Commerce components are shown in this
diagram and are discussed in more detail in the coming slides.

wcs60_ProgrammingArchitecture.ppt Page 4 of 24

IBM Software Group

5

Programming architecture © 2008 IBM Corporation

Runtime framework enhancements

New to this release is the further decoupling of the presentation tier from the business
logic tier to better enable support for multiple sales channels. A sales channel is a method
that a customer can use to purchase merchandise. Some examples of sales channels are
in-store, from an online store, or from a call center. As shown in the diagram, requests can
enter the WebSphere Commerce Server from different types of clients such as a rich
client, kiosk or as a browser request.

In previous releases of WebSphere Commerce, the framework was designed for Web-
based transactions. Now WebSphere Commerce is multi-channel-enabled, meaning that it
can support transactions across various sales channels. The framework enhancements in
this release support multiple presentation layers, responsible for displaying results, which
decouple control logic from business logic.

Although there have been enhancements in the WebSphere Commerce runtime, task
commands, controller commands, access beans, and entity beans continue to function as
in previous releases.

wcs60_ProgrammingArchitecture.ppt Page 5 of 24

IBM Software Group

6

Programming architecture © 2008 IBM Corporation

WebSphere Commerce application layers

Sample business scenarios

Administrative, starter stores and solution

JavaServer Pages or Eclipse Rich Client Platform

Controller and task commands

Enterprise JavaBeans™

DB2, Oracle (except for WebSphere Commerce
- Express), Cloudscape® (for development)

Now that you have seen how the various software components related to WebSphere Commerce fit
together, it is important to understand the application layers. The application layers help you to understand
which parts are foundation layers and which parts you can modify. This diagram shows the various layers
that compose the application architecture.

In WebSphere Commerce, a business model represents a sample business situation in which the
WebSphere Commerce product might be used. The five business models provided by WebSphere
Commerce are business to consumer, business to business, demand chain, supply chain and hosting.

Business processes represent the processes available in WebSphere Commerce divided by business
model. The business processes are divided into three areas: administrative processes, starter stores and
solution. Administrative processes are used to administer a site, a store, or an organization. Starter stores
contain sample processes that can be followed by customers of the store. A solution describes the high-level
view of how all the administrative processes and starter store processes fit within the framework of the
overall business model.

The presentation layer is responsible for displaying results. By default, there are two types of presentation
layers supported: Web which is rendered using JSP files and rich client which is rendered with Eclipse views
and editors.

The business logic layer is where business rules are implemented independent of the presentation layer.
Business logic is implemented using the command pattern. Two types of commands are implemented:
controller commands and task commands.

The persistence layer records the data and operations of the WebSphere Commerce system. The
persistence layer represents entities within the WebSphere Commerce instance and encapsulates the data-
centric logic required to extract or interpret information contained within the database.

The WebSphere Commerce database schema, which includes over 600 tables, is designed specifically for
e-commerce applications and their data requirements. The database schema supports persistence
requirements for the WebSphere Commerce subsystems.

wcs60_ProgrammingArchitecture.ppt Page 6 of 24

IBM Software Group

7

Programming architecture © 2008 IBM Corporation

WebSphere Commerce framework interaction

This diagram provides a summary of the interaction flow between components when forming a response to
a request. It is specific to a Web application that uses Struts.

The process starts when the request is directed to the Presentation layer (Web container) in its own thread.
The thread handling the request is dispatched to the WebSphere Commerce servlet filter. In turn the filter
passes the request to the adapter framework. The adapter framework determines which adapter is capable
of handling the request then returns the appropriate adapter. For example, if the request originated from an
Internet browser, the adapter manager associates the request with the HTTP browser adapter. The adapter
is passed back to the Dynacache servlet container. The filter regains control and passes the request to the
servlet engine for processing. At this point one of two actions can occur. The request can be cached and the
cached response can be returned or the Struts action can invoke the business logic façade by specifying the
interface name of the business logic to invoke and the associated parameters. The business logic façade
queries the command registry to determine the appropriate implementation for the store associated with the
request. The business logic façade invokes the appropriate controller command.

Next, the controller command begins execution. The controller command can access the database using
an access bean and its corresponding entity bean in addition to invoking one or more task commands. The
task commands can also access the database.

The business logic façade returns a set of properties to the Struts action. One of the elements that is part
of the properties is the key to the global forward that represents the response. The action looks up the global
forward in the Struts configuration files. It resolves to the right one based on the store configuration. The
action forward implementation that is selected is the appropriate one for the device of the request. The Struts
request processor processes the action forward which invokes the appropriate JSP page. Within the JSP
page, a data bean is required to retrieve dynamic information from the database. The data bean manager is
used to activate the data bean. The access bean from which the data bean is extended accesses the
database using its corresponding entity bean. Based on globalization information of the request, the data
bean formats the data into a readable version.

wcs60_ProgrammingArchitecture.ppt Page 7 of 24

IBM Software Group

8

Programming architecture © 2008 IBM Corporation

WebSphere Commerce Struts framework

As of WebSphere Commerce V6.0, the WebSphere Commerce Web application has moved from a

proprietary model-view-controller implementation to the Struts open source implementation. Struts is a well-

documented framework for Java Enterprise Web application development, which has become an industry

standard for deploying model-view-controller applications. Struts enforces best practices and design

patterns, boasts a large developer community, and is supported by IBM development tools such as Rational

Application Developer. Among key benefits of Struts are its support for dynamic action forms, form validation,

versatile tag libraries, and Tiles. WebSphere Commerce has extended the base Struts configuration model to

provide the traditional WebSphere Commerce function seen in previous releases.

This diagram expands on the processing of a web-based request through the WebSphere Commerce Struts

framework.

Step 1: The Action servlet receives an HTTP request.

Step 2: The Action servlet routes the request to the module's request processor.

Step 3: The request processor passes the request, action form, and action mapping to the base action.

Step 4: Actions use action form data to invoke business logic operations on behalf of the client

Step 5: An ActionForward object is returned that indicates what view the controller should forward to.

Step 6: The request processor forwards to the appropriate view element when the action is completed.

The next slide describes the function of some key Struts components in more detail.

wcs60_ProgrammingArchitecture.ppt Page 8 of 24

IBM Software Group

9

Programming architecture © 2008 IBM Corporation

WebSphere Commerce Struts

�Action servlet

�Request processor

�Actions

�Action mappings

�Action forms

�Action forwards

�Struts configuration files

http://struts.apache.org

The action servlet is a key controller component. WebSphere Commerce has extended the base Struts ActionServlet
class so all action servlets in the WebSphere Commerce Web application must extend ECActionServlet. The action
servlet provides additional functionality, such as the ability to refresh the Struts configuration without restarting the Web
application. Several WebSphere Commerce components require a refresh of the Struts configuration.

Having received an HTTP request from the action servlet, the request processor performs core request processing.
The request processor uses the Struts configuration file to determine the action mapping for the request and, if
necessary, locates or instantiates an action form for the request. The request processor then locates, or instantiates, the
appropriate action for the request and passes it the request, action form and action mapping. When the action is
complete, the request processor forwards to the appropriate view element.

Actions carry out the controller logic for the individual request. This includes authorization and session logic, locating
and calling the appropriate business (model) logic, and returning an ActionForward object that indicates where the
controller should forward to. BaseAction is the WebSphere Commerce extension of the Struts Action class. It supplies
the functionality that is necessary to invoke WebSphere Commerce commands based on the action's configuration as
provided by the corresponding action mapping. Any custom action that invokes WebSphere Commerce commands must
extend this class.

Action mappings represent the information that the controller knows about the mapping of a particular request to an
instance of a particular Action class. The request processor selects an appropriate action for each request based on the
action mappings (action-mapping elements) defined in the Struts configuration file. ECActionMapping is the WebSphere
Commerce extension of the Struts ActionMapping class that allows custom configuration information to be passed to
actions of the WebSphere Commerce Web application. To specify a mapping for an instance of the BaseAction class or
its descendants, you must use or extend the ECActionMapping class.

Action forms are a key view component that is used to transfer information between the view and the controller-model
pair. An ActionForm object is a Java representation of HTML form data. As such, it encapsulates form data for easy
population and retrieval, supports form data validation, and is reusable. Input data is transferred to ActionForm objects
automatically by the Struts framework.

Action forwards, considered to be a part of the controller, represent the next Web resource, typically an HTML or JSP
page, in the control flow of the application. Returned by an action, an ActionForward object indicates where the request
processor should forward to. ECActionForward is the WebSphere Commerce extension of the Struts ActionForward
class.

Both the action servlet and request processor rely on Struts configuration files for application-specific component
information, allowing for a declarative, rather than programmatic, configuration of a Struts-based Web application. By
default, WebSphere Commerce provides multiple Struts configuration files per module, one for definitions, and the other
for customizations and migration. Using multiple Struts configuration files is a best practice, making parallel development
easier and configuration less prone to errors and conflicts.

wcs60_ProgrammingArchitecture.ppt Page 9 of 24

IBM Software Group

10

Programming architecture © 2008 IBM Corporation

Web services in WebSphere Commerce

�Uses WebSphere Application Server Web service
engine
�Hides the complexity of SOAP

�Reuses existing WebSphere Commerce assets
�Existing programming model

�Existing integration technology

�Designed for customization
�XML request message mapping

�JSP response building

�Inbound/Outbound Web service implementations

WebSphere Commerce V6.0 also introduces a new Web services framework to better
enable support for multiple sales channels such as the Eclipse-based Sales Center tool.

Web services are self-contained, self-describing, modular applications that can be
published and invoked across the Web. Web services perform functions ranging from
simple requests to complicated business processes. After a Web service is registered,
other applications can discover it.

The new Web services framework uses the WebSphere Application Server Web service
runtime infrastructure and Rational tools. It also promotes the use of industry-standard
service definitions and allows top-down and bottom-up creation of Web services.

The existing command pattern is used to represent the business logic, and allow for
existing URL-based controller commands to also be used by the Web services channel.
Conversion from the Web service XML-based message format to name-value pairs used
by existing commands is performed by a message mapper, the same integration
technology that is used for parsing back-end integration legacy messages. The JSP page
composition service is used to generate the Web service response, allowing dynamic
caching to be optimized for either full-page or fragment caching.

Both the XML message mapper and the JSP used with the page composition service
can be customized to process new Web service requests and create new Web service
responses.

You can allow WebSphere Commerce to be the service provider by enabling its
business functions as Web services that can be accessed by external systems. You can
also allow WebSphere Commerce to be the service requester by enabling it to invoke Web
services that are hosted by external systems.

wcs60_ProgrammingArchitecture.ppt Page 10 of 24

IBM Software Group

11

Programming architecture © 2008 IBM Corporation

Web services in WebSphere Commerce

When you enable business operations in WebSphere Commerce as Web services that can be accessed by
external systems, WebSphere Commerce becomes the service provider.

The deployment model for Web services is to have a central server with published WSDL that defines the
services it supports. From there, clients, whether they are external systems, Web applications, or rich client
applications, connect to the central server and invoke services that are defined by the publicly available
WSDL.

The WebSphere Commerce Web service framework uses the approach of mapping the XML (SOAP body)
request into the name-value-pair parameters passed to the service command that are invoked. In terms of
overall Web service request handling, the WebSphere Application Server Web service engine is responsible
for delegating the request to the WebSphere Commerce Web service framework. The framework is
responsible for processing the request and generating the response. Processing the request consists of
many steps. First the credentials associated with the request are resolved and the SOAP body is converted
into name-value pairs. The name-value pairs are mapped to a controller command, the command is invoked,
and the JSP composition service is used to create the XML response to the Web service request.

The JSP composition service allows you to easily modify the JSP template file in order to insert additional
nodes in the response instead of having to provide Java code for this capability. JSP page resolution differs
somewhat between the WebSphere Commerce Struts-based Web application and the WebSphere
Commerce Web services. In a Struts-based Web application, the result of executing the business logic is a
set of response properties, one of which is the name of the view to be used to determine which JSP page to
invoke. The JSP page invoked generates an HTML response. In a Web services based application, the view
for determining the response is specified in the mapping configuration. The view in the response properties is
only used if no view is found in the mapping configuration. The view for a Web service response uses a JSP
page to generate an XML response, which is returned as the response message to the Web service request.
The Web service engine handles adding the necessary SOAP envelope to the response, and the Web
service framework provides the capability of converting the XML JSP response to the SOAP element.

wcs60_ProgrammingArchitecture.ppt Page 11 of 24

IBM Software Group

12

Programming architecture © 2008 IBM Corporation

WebSphere Commerce functional architecture

This diagram is a recap of the WebSphere Commerce functional architecture seen earlier
in this presentation. The components that make up the business logic layer are examined
in more detail.
The business logic façade is a generic interface implemented as a stateless session bean.
The Struts controller calls the business logic façade to invoke controller commands. A
controller command performs business process logic such as OrderProcess. It invokes
task commands to accomplish different units of work in the business process. By default,
access control is enabled for controller commands. A task command is an autonomous
task that accomplishes a specific unit of application logic such as check inventory. A task
command typically works with other task commands to complete the processing of a
controller command. By default, access control is not enabled for task commands.
Business context service, labeled BCS in the diagram, is new in version 6. It is a service
that manages contextual information used by business components. The contexts include
such information as globalization and entitlement.
Access beans are simple persistent objects with setters and getters. The access bean
behaves like a Java bean and hides all the enterprise bean specific programming
interfaces, like JNDI, home and remote interfaces from the clients. Rational Application
Developer provides tool support to generate access beans from the schema. Entity beans
are used in the persistence layer within WebSphere Commerce. The architecture is
implemented according to the EJB component architecture. The EJB architecture defines
two types of enterprise beans: entity beans and session beans.
Finally, the presentation layer displays the result of command execution. The presentation
layer can use JSP pages, or other rendering technologies.
The remaining slides discuss the WebSphere Commerce command framework, business
context service and access beans in more detail.

wcs60_ProgrammingArchitecture.ppt Page 12 of 24

IBM Software Group

13

Programming architecture © 2008 IBM Corporation

WebSphere Commerce commands

�Controller commands

�Task commands

�Data bean commands

�View commands

WebSphere Commerce commands are Java beans that contain the programming logic
associated with handling a particular request. Commands perform a specific business
process, such as adding a product to the shopping cart, processing an order, updating a
customer's address book, or displaying a specific product page.
Controller commands encapsulate the logic related to a particular business process. In
general, a controller command contains the control statements (for example, if, then, else)
and invokes task commands to perform individual tasks in the business process. Upon
completion, a controller command returns a view name. Based upon the view name, the
store identifier, and the device type, the solution controller determines the appropriate
implementation class for the view and then invokes it. Examples of controller commands
include the OrderProcessCmd command for order processing and the LogonCmd that
allows users to log on.
Task commands implement a specific unit of application logic. In general, a controller
command and a set of task commands together implement the application logic for a URL
request. Task commands are run in the same container as the controller command.
Examples of task commands are DoPayment and DoLuhnCheck, which are used in the
OrderProcess controller command.
Data bean commands are invoked by the data bean manager when a JSP page needs to
instantiate a data bean. The primary function of a data bean command is to populate the
fields of a data bean with data from a persistent object.
The purpose of view commands is to compose a view as a response to a client request.
View commands are deprecated in this release of WebSphere Commerce. Since
WebSphere Commerce is a Struts application, view commands have been replaced by
global forwards. For compatibility with previous releases, view commands continue to
work.

wcs60_ProgrammingArchitecture.ppt Page 13 of 24

IBM Software Group

14

Programming architecture © 2008 IBM Corporation

Command framework

� Command design pattern

� Command factory

� Command flow

� Command registration
framework

Command beans follow a specific design pattern. Every command includes both an interface class and an
implementation class. From a caller's perspective, the invocation logic involves setting input properties,
invoking an execute method, and retrieving output properties. From the perspective of the command
implementer, commands follow the WebSphere command framework, which implements the standard
command design pattern allowing a level of indirection between the caller and the implementation. This level
of indirection provides the ability to invoke an access control policy manager that determines if the caller is
allowed to invoke the command. It also allows you to specify a different command implementation for
different stores, based upon the store identifier.

In order to create new command objects, the caller of the command uses the command factory. It is based
on the factory design pattern, which defers instantiation of an object away from the invoking class, to the
factory class that understands which implementation class to instantiate. The command factory provides a
way to determine the correct implementation class to use based upon the individual store.

Since controller commands encapsulate the logic for a business process, they frequently invoke individual
task commands to perform specific units of work in the business process. Access beans are invoked when
information in the database must be retrieved or updated. Either a task or controller command can invoke
access beans. Requests then flow from access beans to entity beans that can read from, and write to, the
WebSphere Commerce database.

WebSphere Commerce controller and task commands are registered with the command registration
framework. The command registry is implemented by means of the CMDREG database table. The command
registry provides a mechanism for mapping the command interface to its implementation class. Multiple
implementations of an interface allow for command customization on a per store basis. If the command you
are writing always uses the same implementation class, you do not necessarily have to register the
command in the command registry. In this case, you can use the defaultCommandClassName attribute in
the interface to specify the implementation class.

wcs60_ProgrammingArchitecture.ppt Page 14 of 24

IBM Software Group

15

Programming architecture © 2008 IBM Corporation

Command error handling

�Exception types
�ECApplicationException – no retry

�ECSystemException – retry allowed

�Customized code and exception handling

�Exception handling flow

�Exception logging
�WebSphere Application Server’s logs

�WebSphere Commerce tracing facility

WebSphere Commerce uses a well-defined command error handling framework that is simple to use in
customized code. By design, the framework handles errors in a manner that supports multicultural stores. A
command can create one of two exception types.

An ECApplicationException is created if the error is related to user input and always fails. For example,
when a user enters an incorrect parameter, an ECApplicationException is created. When this exception
occurs, the solution controller does not retry the command, even if it is specified as a retriable command.

An ECSystemException is created if a runtime exception or a WebSphere Commerce configuration error is
detected. Examples of this type of exception include create exceptions, remote exceptions, and other EJB
exceptions. When this type of exception occurs, the solution controller retries the command if it is retriable
and the exception was caused by either a database deadlock or database rollback.

When creating new commands, it is important to include appropriate exception handling. You can take
advantage of the error handling and tracing provided in WebSphere Commerce, by specifying the required
information when catching an exception.

The exception handling flow begins when the solution controller invokes a controller command. The
command creates an exception that is caught by the solution controller. This can be either an
ECApplicationException, or an ECSystemException. For a Web application, the struts framework determines
the error global forward and invokes the specified error view. When invoking the view command, the solution
controller composes a set of properties from the ECException object and sets it to the view. The
ErrorDataBean passes the error parameters to the message helper object. The StoreErrorDataBean maps
the error codes to messages.

Exception handling is tightly integrated with the logging system. When a system exception occurs, it is
automatically logged. Exception messages can be written to both the WebSphere Application Server logs
and the WebSphere Commerce trace files.

wcs60_ProgrammingArchitecture.ppt Page 15 of 24

IBM Software Group

16

Programming architecture © 2008 IBM Corporation

Command access control

�Users

�Actions

�Resources

�Relationships

�Command-level access control

�Resource-level access control

Access control in a WebSphere Commerce application is composed of four elements: users, actions,
resources, and relationships.

Users are the people that use the system. For access control purposes, users must be grouped into
relevant access groups. One common attribute that is used to determine membership of an access group is
roles. Roles are assigned to users on a per organization basis. Some examples of access groups include
registered customers, guest customers, or administrative groups like customer service representatives.

Actions are the activities that users can perform on the resource. For access control purposes, actions
must also be grouped into relevant action groups. For example, a common action used in a store is a view. A
view is invoked to display a store page to customers. The views used in your store must be declared as
actions and assigned to an action group before they can be accessed.

Resources are the entities that are protected. For example, if the action is a view, the resource to be
protected is the command that invoked the view, for example com.ibm.commerce.command.ViewCommand.
For access control purposes, resources are grouped into resource groups.

Relationships are the relationship between a user and the resource requested. Access control policies
might require that a relationship between a user and the source be satisfied. For example, users might only
be allowed to display the orders that they have created.

These four elements are combined to create access policies. Access control is based on a user’s context,
action invoked, resources used, and the relationships within the stores and site implementation. There are
two types of policy-based access control in WebSphere Commerce, command-level and resource-level. In
command-level access control, the "resource" is the command itself and the "action" is to invoke the
command within the current store. The access control check determines if the caller is permitted to invoke
the command within the current store. In resource-level access control, the "resource" is any protectable
resource that the command or bean accesses and the "action" is the command itself.

wcs60_ProgrammingArchitecture.ppt Page 16 of 24

IBM Software Group

17

Programming architecture © 2008 IBM Corporation

Business context services

�Business contexts

�Benefits
�Enablement of generic components

�Tailored content and experience

�Precisely targeted offers

�Enforcement of business policies

�Appropriate prices, entitlements, and terms for a
particular user

�Business context service components

In previous versions of WebSphere Commerce, runtime infrastructure was designed to
serve customers from the Web channel. Since WebSphere Commerce introduces support
for different client types, a new infrastructure is needed to provide contextual information
to the business logic independent of channel. Business context services track user
session information from different channels by using different types of business contexts.
A complete list of business contexts is provided in a later slide. Examples include the
BaseContext and EntitlementContext. The first contains the basic attributes that a request
needs, such as store ID, caller ID, and the run-as ID. The second holds information about
entitlement criteria, such as reduced prices for gold club membership. You can also define
custom context information to extend WebSphere Commerce predefined session
attributes.

Abstracting out user contextual information offers several benefits. Components can be
created in a generic fashion with specific actions being triggered by the context
information. Content and shopping experience can be tailored to the individual resulting in
precisely targeted offers in addition to appropriate prices, entitlements and terms.
Business policies can be easily enforced.

Multiple business context services can be logically grouped into business components. A
component specializes in a function such as catalog management or tax calculation.

wcs60_ProgrammingArchitecture.ppt Page 17 of 24

IBM Software Group

18

Programming architecture © 2008 IBM Corporation

Business context services

This diagram shows the artifacts in the business context model. The solution controller is responsible for managing the
activities of a user. In the WebSphere Commerce Struts framework the solution controller exists as part of the base
action. In the Sales Center the solution controller exists as part of the rich client application. The client performs a limited
set of actions while the solution controller provides the additional business context service process hooks.

An activity token is an identifier for an activity that spans multiple requests and transactions. An activity typically begins
when a user logs on to the site and ends when a user logs off. The activity token is unique for each caller, run-as user,
and store. The activity token groups the set of contexts effective during a particular client's request to the various
business components. The client supplies this activity token on every request to indicate the experience that it expects
from the business components. In most cases, the solution controller initiates a request to the business context service
to request an activity token.

A business component group is a set of related services. A service provides a specialized function. It interacts with the
business context service to signify the beginning and the end of a request such that any pre-processing and post­
processing on business contexts can be done. Also, components can retrieve and update various business contexts
during the execution of a request.

The business context engine provides contexts that dictate the behavioral characteristics of business components over
the lifetime of the session. The business context engine consists of the business context service, labeled BCS in this
diagram, and business contexts, shown here as the solution context.

The solution controller uses the business context service (BCS) to manage contexts required by business
components. BCS is also an interface used by the components to obtain contexts they need. The contexts associated
with an activity maintain their state for the lifetime of the activity. BCS also manages a cache of the business contexts
associated with an activity within a request.

Business contexts establish an execution environment that affects the output of a business component for the
equivalent input, based on the solution needs. Contexts are not directly invoked by clients of the business processes.
Instead it is the business component that uses the services provided by the contexts during the execution of a request.
The lifespan of a context starts with the creation of an activity and ends with the completion of the activity. Each
business context implements two interfaces. The service provider interface, labeled SPI in the diagram, defines methods
for business context service to indicate events such as the beginning of an activity, the start and end of a request. The
context APIs are extended by each business context which defines methods for business logic to use to retrieve context
specific information.

Business contexts are grouped together in business context sets. A business context set is a logical grouping of
business contexts for a particular type of request. Different context sets can be configured for requests coming from
different Web applications. For example, requests that are initiated from the Accelerator Web application need to include
content and task contexts for authoring purposes, while requests from the store Web application do not have this
requirement.

wcs60_ProgrammingArchitecture.ppt Page 18 of 24

IBM Software Group

19

Programming architecture © 2008 IBM Corporation

Business contexts

�BaseContext

�EntitlementContext

�GlobalizationContext

�ContentContext

�TaskContext

�AuditContext

�PreviewContext

�ExperimentContext

WebSphere Commerce predefines the contexts shown here.
BaseContext contains the basic attributes that an activity needs, such as store ID, caller

ID, and the run-as ID.
EntitlementContext holds information about entitlement criteria, such as reduced prices

for gold club membership.
GlobalizationContext helps components determine locale-specific information such as

what language a message should be rendered in, or what currency should be used in the
calculation of a price.

If Workspaces are enabled, ContentContext determines the content or business objects
that can be displayed or edited based on workspace task group information and
TaskContext determines which task an administrator is currently performing.

AuditContext is typically provided by vendor components. You might want to bridge the
gap to the vendor interface instead of programming it directly. This context enables you to
connect to a different vendor's implementation of the service in the future without the need
to rewrite your component.

The preview context allows you to validate independent content without influencing other
users. The context object associated with the preview operation represents the state
information that is used when deciding the content to display. The preview context
contains the preview date that is used to render the content to be displayed.

ExperimentContext is used to store the result of all active experiments for individual
users, where the result is a system-generated number which determines the control or test
element to be selected in the experiment. This information is persisted throughout the user
session, so the same result is used in the same session without re-generation of the
number.

wcs60_ProgrammingArchitecture.ppt Page 19 of 24

IBM Software Group

20

Programming architecture © 2008 IBM Corporation

Java beans in WebSphere Commerce

�Data beans

�Access beans

�Enterprise Java Beans
�Entity beans

�Session beans

There are three types of Java beans used in WebSphere Commerce: data beans, access
beans and Enterprise Java Beans.

A data bean is a Java bean that is used within a JSP page to provide dynamic content. A
data bean normally provides a simple representation of a WebSphere Commerce entity
bean. The data bean encapsulates properties that can be retrieved from or set within the
entity bean. As such, the data bean simplifies the task of incorporating dynamic data into
JSP pages.

Access beans, which can be generated by Rational Application Developer, provide a
simple way to access information from an entity bean. WebSphere Commerce commands
interact with access beans rather than directly with the entity beans. Access beans are
discussed more on the next slide.

The persistence layer within the WebSphere Commerce architecture is implemented
according to the EJB component architecture. The EJB architecture defines two types of
enterprise beans: entity beans and session beans. WebSphere Commerce uses mostly
entity beans allowing developers to use the EJB tools provided in Rational Application
Developer. A small number of stateless session beans are used to handle intensive
database operations, such as performing a sum of all the rows in a particular column.

wcs60_ProgrammingArchitecture.ppt Page 20 of 24

IBM Software Group

21

Programming architecture © 2008 IBM Corporation

Access beans in WebSphere Commerce

�Behave like a Java bean

�Hide EJB interfaces (JNDI, Home, Remote)

�Cache the EJB Home object (expensive)

� Implement a copyHelper object

As illustrated in the diagram, WebSphere Commerce commands interact with access
beans rather than directly with entity beans.

Using the access bean provides several advantages over working with entity beans
directly. The first is a simpler programming interface. The access bean behaves like a
Java bean and hides all the enterprise specific programming interfaces, like JNDI, home
and remote interfaces from the clients. Another advantage is at run time the access bean
caches the enterprise home object because look ups to the home object are expensive, in
terms of time and resource usage. Also, the access bean implements a copyHelper object
that reduces the number of calls to the enterprise bean when commands get and set
enterprise bean attributes. Therefore, only a single call to the enterprise bean is required,
when reading or writing multiple enterprise bean attributes.

wcs60_ProgrammingArchitecture.ppt Page 21 of 24

IBM Software Group

22

Programming architecture © 2008 IBM Corporation

Summary

�Runtime architecture

�Struts in WebSphere Commerce

�Web services in WebSphere Commerce

�Command framework

�Business context service

�Java beans in WebSphere Commerce

This presentation introduced you to many topics related to the runtime architecture and
development model of WebSphere Commerce. The architecture overview was followed by
an introduction to the use of Struts and Web services in WebSphere Commerce. Next was
a summary of the command framework. The new business context service was introduced
and the presentation concluded with a recap of Java beans in WebSphere Commerce.

wcs60_ProgrammingArchitecture.ppt Page 22 of 24

IBM Software Group

23

Programming architecture © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_wcs60_ProgrammingArchitecture.ppt

This module is also available in PDF format at: ../wcs60_ProgrammingArchitecture.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

wcs60_ProgrammingArchitecture.ppt Page 23 of 24

IBM Software Group

24

Programming architecture © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

Cloudscape DB2 WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

EJB, Enterprise JavaBeans, Java, JavaServer, JSP, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

wcs60_ProgrammingArchitecture.ppt Page 24 of 24

