

IBM Software Group

®

WebSphere ® Commerce V6

Developing and customizing store
business logic

© 2008 IBM Corporation

Updated June 11, 2008

Welcome to the WebSphere Commerce V6 presentation. This presentation describes
methods and best practices for developing and customizing store business logic.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 1 of 29

IBM Software Group

2

Developing and customizing store business logic © 2008 IBM Corporation

Agenda

�Describe the WebSphere Commerce command
framework and the command API

�Examine how to register commands

�Describe the command programming model

�Introduce customizable components in WebSphere
Commerce

This presentation introduces you to the WebSphere Commerce command framework.
Command registration and the command programming model is discussed. The
presentation concludes with a discussion of customizable business components in
WebSphere Commerce.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 2 of 29

IBM Software Group

3

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce functional architecture

This diagram summarizes the WebSphere Commerce functional architecture. If you are
not familiar with the WebSphere Commerce architecture you should view the presentation
Programming architecture before continuing with this presentation. The components
that make up the business logic layer will now be examined in more detail.
The business logic façade is a generic interface implemented as a stateless session bean.
The Struts controller calls the business logic façade to invoke controller commands. A
controller command performs business process logic such as OrderProcess. It invokes
task commands to accomplish different units of work in the business process. By default,
access control is enabled for controller commands. A task command is an autonomous
task that accomplishes a specific unit of application logic such as check inventory. A task
command typically works with other task commands to complete processing of a controller
command. By default, access control is not enabled for task commands.
Business context service, labeled BCS in the diagram, is new in version 6. It is a service
that manages contextual information used by business components. The contexts include
such information as globalization and entitlement.
Access beans are simple persistent objects with setters and getters. The access bean
behaves like a Java™ bean and hides all the enterprise bean specific programming
interfaces, like JNDI, home and remote interfaces from the clients. Rational® Application
Developer provides tool support to generate access beans from the schema. Entity beans
are used in the persistence layer within WebSphere Commerce. The architecture is
implemented according to the EJB component architecture. The EJB architecture defines
two types of enterprise beans: entity beans and session beans.
Finally, the presentation layer displays the result of command execution. The presentation
layer can use JSP pages, or other rendering technologies.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 3 of 29

IBM Software Group

4

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce commands

�Controller commands

�Task commands

�Data bean commands

�View commands

WebSphere Commerce commands are Java beans that contain the programming logic
associated with handling a particular request. Commands perform a specific business
process, such as adding a product to the shopping cart, processing an order, updating a
customer's address book, or displaying a specific product page.
Controller commands encapsulate the logic related to a particular business process. In
general, a controller command contains the control statements (for example, if, then, else)
and invokes task commands to perform individual tasks in the business process. Upon
completion, a controller command returns a view name. Based upon the view name, the
store identifier, and the device type, the solution controller determines the appropriate
implementation class for the view and then invokes it. Examples of controller commands
include the OrderProcessCmd command for order processing and the LogonCmd that
allows users to log on.
Task commands implement a specific unit of application logic. In general, a controller
command and a set of task commands together implement the application logic for a URL
request. Task commands are run in the same container as the controller command.
Examples of task commands are DoPayment and DoLuhnCheck used in the
OrderProcess controller command.
Data bean commands are invoked by the data bean manager when a JSP page needs to
instantiate a data bean. The primary function of a data bean command is to populate the
fields of a data bean with data from a persistent object.
The purpose of view commands is to compose a view as a response to a client request.
View commands are deprecated in this release of WebSphere Commerce. Since
WebSphere Commerce is a Struts application, view commands have been replaced by
global forwards. For compatibility with previous releases, view commands continue to
work.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 4 of 29

IBM Software Group

5

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce command factory

�Design pattern

�Instantiates new command objects

�Defers instantiation away from the invoking class

�Factory class determines the correct
implementation class
�Two ways to declare implementation class of a
command
� defaultCommandClassName
� Command registry

�Command registry overrides
defaultCommandClassName

In order to create new command objects, the caller of the command uses the command
factory. The command factory is a bean that is used to instantiate commands. It is based
on the factory design pattern, which defers instantiation of an object away from the
invoking class, to the factory class that understands which implementation class to
instantiate.

The factory provides a smart way to instantiate new objects. In this case, the command
factory provides a way to determine the correct implementation class when creating a new
command object, based upon the individual store. The command interface name and the
particular store identifier are passed into the new command object, upon instantiation.

There are two ways for the implementation class of a command to be specified. A default
implementation class can be specified directly in the code for the command interface,
using the defaultCommandClassName variable. The second way to specify the
implementation class is to use WebSphere Commerce command registry. The command
registry should always be used when the implementation class varies from one store to
another. In the case where a default implementation class is specified in the code for the
interface and a different implementation class is specified in the command registry, the
command registry takes precedence.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 5 of 29

IBM Software Group

6

Developing and customizing store business logic © 2008 IBM Corporation

Nesting controller commands

�Pass the command context

�Pass the request properties

�Call the execute() method

YourControllerCmd ctrlCmd = null;
public void processAndCallOtherCommand()

throws ECException
{

YourControllerCmd ctrlCmd = (YourControllerCmd)CommandFactory.createCommand(
com.yourcompany.commands.yourControllerCmd, this.getStoreId());

ctrlCmd.setCommandContext(this.getCommandContext());
ctrlCmd.setRequestProperties(this.getRequestProperties());
ctrlCmd.execute();

}

You will most often use the command factory to create instances of task commands.
However, it can also be used within one controller command to create an instance of
another controller command. The syntax for instantiating task commands and controller
commands is the same. You specify the name of the command's interface and the store
ID in both scenarios.

Once you have instantiated the nested command, call its setCommandContext method
and pass in the current command context. Note that if you are passing a different set of
request properties to the nested command and these parameters affect the command
context, you should clone the command context before instantiating the nested command.
This preserves the command context information for the outer command.

The preferred approach is to call the setRequestProperties method of the nested
command and pass a TypedProperties object containing input properties. Otherwise, you
can use the individual setter methods defined on the interface of the command to set the
required properties.

After input properties have been set, call the execute method of the nested command. All
controller commands must return a view when processing has completed. But in this case,
the outer command does not need to do anything with the view returned by the nested
command. The nested command is invoked within the transaction scope of the outer
command.

The code snippet shows an example of a nested controller command. The example shows
a method in the outer command and how it can use the command factory to instantiate a
second controller command.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 6 of 29

IBM Software Group

7

Developing and customizing store business logic © 2008 IBM Corporation

Long-running controller commands

If a controller command takes a long time to run, you can split the command into two
commands. The first command, which is invoked as the result of a URL request, adds the
second command to the Scheduler, so that it runs as a background job.

The flow is shown in the diagram. ControllerCommand1 is invoked as a result of a URL
request. ControllerCommand1 adds a job to the Scheduler. The job is
ControllerCommand2. ControllerCommand1 returns a view, immediately after adding the
job to the Scheduler. The Scheduler invokes ControllerCommand2 as a background job.

In this scenario, the client typically polls the result from ControllerCommand2.
ControllerCommand2 should write the job state to the database.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 7 of 29

IBM Software Group

8

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce command registry

WebSphere Commerce controller and task commands are registered with the command
registration framework. The command registry is implemented by means of the CMDREG
database table. The command registry provides a mechanism for mapping the command
interface to its implementation class. Multiple implementations of an interface allow for
command customization on a per store basis. The table describes information contained in
the command registry.

In general, when you create a new controller or task command, you should create a
corresponding entry in the command registry. If the command you are writing always uses
the same implementation class, you do not necessarily have to register the command in
the command registry. In this case, you can use the defaultCommandClassName attribute
in the interface to specify the implementation class. If you specify the implementation class
in this manner, you cannot pass default properties to the implementation class and the
same implementation class must be used for all stores.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 8 of 29

IBM Software Group

9

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce command registry example

Consider a scenario in which your site has two stores: StoreA and StoreB. Each store has
different implementations of the command. This slide shows how the command registry is
used to enable this customization. Calling MyUrl will invoke the business logic that is
associated with the com.ibm.commerce.mycommands.MyUrl interface. The interface is
shared between the two stores. However the implementation for the business logic is
controlled by the store specific configuration found in the Command Registry.

The diagram illustrates the flow of the solution controller. Using entries in the command
registry, the solution controller determines the correct implementation class for the store
being accessed.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 9 of 29

IBM Software Group

10

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce command registry
object model

The command, view, and URL registries are part of the WebSphere Commerce command
framework. The framework determines how a command runs and then returns a response
based on the view returned by the command. The command execution and response is
store dependent, which means that the same command can be implemented differently for
each store and return different responses for each store. The diagram illustrates the
command, view, and URL registry structure in the WebSphere Commerce Server.
The URL registry maps a command name to the actual interface of the command to be
run. Each URL registry entry is store sensitive. Each store can define a different interface
for the same URL value. If the store version of the URL registry cannot be found, then the
URL registry defined for the site (store 0) is used. By default, all URL registries are defined
for the site. URL registry mappings are stored in a Struts configuration file as action
mappings.
Every command, whether it is a controller or task command, can be defined in the
command registry. If a command is defined in the command registry, that definition is used
as the command implementation when the command is invoked. If the command is not
defined in the command registry, a default implementation is used instead.
After a command is run, in most cases, the requester of the command requires a response
to be returned. Every view that returns a response must be defined in the view registry,
either per store, or by default, by site. Each store normally defines the view for each
possible device format of the incoming request. However, if a view is not defined by a
store, the default view for the site is used. The adapter handling the request decides which
device format to use when determining which view to call. There is no generic device
format. Depending on the different types of requests that can be accepted, there might be
a view defined for each device format. The view registry is stored as forwards in the Struts
configuration file.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 10 of 29

IBM Software Group

11

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce command context

�A handle to the solution controller

�Wraps the new business context objects

�Can be modified for specific command execution

�A container of common environment objects
�User ID

�User object (UserAccessBean)

�Language identifier

�Store Identifier

�More …

The Command Context is another key piece of the WebSphere Commerce command
framework.

Commands can obtain information using the command context. Examples of information
available include the user's ID, the user object, the language identifier, and the store
identifier.

When writing a command, you have access to the command context by calling the
getCommandContext method of the command superclass. The command context is sent
to the controller command when the command is invoked by the component façade. A
controller command should propagate the command context to any task or controller
commands that are invoked during processing.

In previous releases, the information was stored in the Command Context object. With the
introduction of the Business Context Service in this release, this information is now stored
in various business contexts. Command Context becomes a helper class that wraps on
top of these business contexts. You can directly retrieve the same piece of information by
retrieving the appropriate business context. Information that is not available from business
contexts, remains available and local to the Command Context object.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 11 of 29

IBM Software Group

12

Developing and customizing store business logic © 2008 IBM Corporation

Business context services

�Business contexts

�Benefits
�Enablement of generic components

�Tailored content and experience

�Precisely targeted offers

�Enforcement of business policies

�Appropriate prices, entitlements, and terms for a
particular user

�Business context service components

In older versions of WebSphere Commerce, runtime infrastructure is designed to serve
customers from the Web channel. As WebSphere Commerce introduces support for
different client types, a new infrastructure is needed to provide contextual information to
the business logic independent of channel. Business context services track user session
information from different channels by using different types of business contexts. A
complete list of business contexts is provided in the next slide. Examples include the
BaseContext and EntitlementContext. The first contains the basic attributes that an
request needs, such as store ID, caller ID, and the run-as ID. The second holds
information about entitlement criteria, such as reduced prices for gold club membership.
You can also define custom context information to extend WebSphere Commerce
predefined session attributes.

Abstracting user contextual information offers several benefits. Components can be
created in a generic fashion with specific actions being triggered by the context
information. Content and shopping experience can be tailored to the individual resulting in
precisely targeted offers in addition to appropriate prices, entitlements and terms.
Business policies can be easily enforced.

Multiple business context services can be logically grouped into business components. A
component specializes in a function such as catalog management or tax calculation.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 12 of 29

IBM Software Group

13

Developing and customizing store business logic © 2008 IBM Corporation

Business contexts

�BaseContext

�EntitlementContext

�GlobalizationContext

�ContentContext

�TaskContext

�AuditContext

�PreviewContext

�ExperimentContext

WebSphere Commerce predefines the contexts shown here.
BaseContext contains the basic attributes that an activity needs, such as store ID, caller
ID, and the run-as ID.
EntitlementContext holds information about entitlement criteria, such as reduced prices for
gold club membership.
GlobalizationContext helps components determine locale-specific information such as
what language a message should be rendered in, or what currency should be used in the
calculation of a price.
If Workspaces are enabled, ContentContext determines the content or business objects
that can be displayed or edited based on workspace task group information and
TaskContext determines which task an administrator is currently performing.
AuditContext is typically provided by vendor components. You might want to bridge the
gap to the vendor interface instead of programming to it directly. This context enables you
to connect to a different vendor's implementation of the service in the future without the
need to rewrite your component.
The preview context allows you to validate independent content without influencing other
users. The context object associated with the preview operation represents the state
information that is used when deciding the content to display. The preview context
contains the preview date that is used to render the content to be displayed.
ExperimentContext is used to store the result of all active experiments for individual users,
where the result is a system-generated number which determines the control or test
element to be selected in the experiment. This information is persisted throughout the user
session, so the same result is used in the same session without re-generation of the
number.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 13 of 29

IBM Software Group

14

Developing and customizing store business logic © 2008 IBM Corporation

Controller command programming model

� Implementation class extends from ControllerCommandImpl

� Interface extends from ControllerCommand

�Methods to implement and their usage

Command beans follow a specific design pattern. Every command includes both an interface class and an
implementation class. A new controller command should extend the abstract controller command class
ControllerCommandImpl. When writing a new controller command, you should override six methods from the
abstract class.

First, isGeneric. In the standard WebSphere Commerce implementation there are multiple types of users.
These include generic, guest, and registered users. The generic user has a common user ID that is used
across the entire system. This common user ID supports general browsing on the site in a manner that
minimizes system resource usage. The isGeneric method returns a Boolean value which specifies whether
the command can be invoked by the generic user.

Second, isRetriable. The isRetriable method returns a Boolean value which specifies whether the command
can be retried on a transaction rollback exception. The isRetriable method of the new controller command
superclass returns a value of false. You should override this method and return a value of true if your
command can be retried on a transaction rollback exception.
Third, setRequestProperties. The setRequestProperties method is invoked by the Web controller to pass all
input properties to the controller command. The controller command must parse the input properties and set
each individual property explicitly within this method. This explicit setting of properties by the controller
command itself promotes the concept of type safe properties.

Fourth, validateParameters. The validateParameters method is used to do initial parameter checking and
any necessary resolution of parameters. This method is called before both the getResources and
performExecute methods.

Fifth, getResources. This method is used to implement resource-level access control. It returns a vector of
resource-action pairs upon which the command intends to act. If nothing is returned, no resource-level
access control is performed.

Sixth, performExecute. The performExecute method contains the business logic for your command. It should
invoke the performExecute method of the command's superclass before any new business logic is invoked.
At the end, it must return a view name.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 14 of 29

IBM Software Group

15

Developing and customizing store business logic © 2008 IBM Corporation

Extending an existing controller command

Suppose there is an existing WebSphere Commerce controller command, called
ExistingControllerCmd. Following the WebSphere Commerce naming conventions, this
controller command will have an interface class named ExistingControllerCmd and an
implementation class named ExistingControllerCmdImpl. Now assume that a business
requirement arises and you must add new business logic to this existing command. One
portion of the logic must be run before the existing command logic and another portion
must be run after the existing command logic.
The first step in adding the new business logic is to create a new implementation class
that extends the original implementation class. In this example, you create a new
ModifiedControllerCmdImpl class that extends the ExistingControllerCmdImpl class. The
new implementation class should implement the original interface (ExistingControllerCmd).
In the new implementation class, you must create a new performExecute method to
override the performExecute of the existing command. Within the new performExecute
method, there are two ways in which you can insert your new business logic. You can
either include the code directly in the controller command, or you can create a new task
command to perform the new business logic. If you create a new task command then you
must instantiate the new task command object from within the controller command.
The code snippet demonstrates how to add new business logic to the beginning and end
of an existing controller command by including the logic directly in the controller command.
Regardless of whether you include the new business logic in the controller command, or
create a task command to perform the logic, you must also update the CMDREG table in
the WebSphere Commerce command registry. This is required to associate the new
controller command implementation class with the existing controller command interface.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 15 of 29

IBM Software Group

16

Developing and customizing store business logic © 2008 IBM Corporation

Task command programming model

� Implementation class extends fromTaskCommandImpl

� Interface extends from TaskCommand

�performExecute method

�Simple example

Since controller commands encapsulate the logic for a business process, they frequently invoke individual
task commands to perform specific units of work in the business process. A new task command should
extend the abstract task command class TaskCommandImpl and implement an interface that extends the
TaskCommand interface. The diagram illustrates the relationship between the implementation class and
interface of a new task command with the existing abstract implementation class and interface.

All the input and output properties for the task command must be defined in the command interface, for
example MyTaskCmd. The caller programs to the task command interface, rather than the task command
implementation class. This enables you to have multiple implementations of the task command (one for each
store), without the caller being concerned about which implementation class to call.

All the methods defined in the interface must be implemented in the implementation class. Since the
command context should be set by the caller (a controller command), the task command does not need to
set the command context. The task command can, however, obtain additional session information by using
the command context. In addition to implementing the methods defined in the task command interface, you
should override the performExecute method from the abstract task command class. The performExecute
method contains the business logic for the particular unit of work that the task command performs. It should
invoke the performExecute method of the task command's superclass, before performing any business logic.

The runtime framework calls the getResources method of the controller command to determine which
protectable resources the command will access. It might be the case that a task command is invoked during
the scope of a controller command and it attempts to access resources that were not returned by the
getResources method of the controller command. If this is the case, the task command itself can implement
a getResources method to ensure that access control is provided for protectable resources. Note that, by
default, getResources returns null for a task command and resource-level access control checking is not
performed. Therefore, you must override this if the task command accesses protectable resources.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 16 of 29

IBM Software Group

17

Developing and customizing store business logic © 2008 IBM Corporation

Command error handling

�Exception types
�ECApplicationException – no retry

�ECSystemException – retry allowed

�Customized code and exception handling

�Exception handling flow

�Exception logging
�WebSphere Application Server’s logs

�WebSphere Commerce tracing facility

WebSphere Commerce uses a well-defined command error handling framework that is simple to use in
customized code. By design, the framework handles errors in a manner that supports multicultural stores. A
command can create one of two exception types.

An ECApplicationException is created if the error is related to user input and will always fail. For example,
when a user enters an incorrect parameter, an ECApplicationException is created. When this exception
occurs, the solution controller does not retry the command, even if it is specified as a retriable command.

An ECSystemException is created if a runtime exception or a WebSphere Commerce configuration error is
detected. Examples of this type of exception include create exceptions, remote exceptions, and other EJB
exceptions. When the exception was caused by either a database deadlock or database rollback, the
solution controller retries the command, if it is retriable.

When creating new commands, it is important to include appropriate exception handling. You can take
advantage of the error handling and tracing provided in WebSphere Commerce, by specifying the required
information when catching an exception.

The exception handling flow begins when the solution controller invokes a controller command. The
command creates an exception that is caught by the solution controller. This can be either an
ECApplicationException, or an ECSystemException. For a Web application, the struts framework determines
the error global forward and invokes the specified error view. When invoking the view command, the solution
controller composes a set of properties from the ECException object and sets it to the view. The
ErrorDataBean passes the error parameters to the message helper object. The StoreErrorDataBean maps
the error codes to messages.

Exception handling is tightly integrated with the logging system. When a system exception occurs, it is
automatically logged. Exception messages can be written to both the WebSphere Application Server logs
and the WebSphere Commerce trace files.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 17 of 29

IBM Software Group

18

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce data beans

�Data beans are Java bean objects that extend
access beans

�Access beans wrap the entity EJB objects to
provide a simple interface to the database

�Data beans are grouped by subsystem

� Three types:
�SmartDataBean

�CommandDataBean

�InputDataBean

Extending business logic might also result in new or modified data beans. A data bean is a
Java bean that is mainly used to provide dynamic data in JSP pages. There are two types
of data beans: smart data beans and command data beans.
A smart data bean uses a lazy fetch method to retrieve its own data. This type of data
bean can provide better performance in situations where not all data from the access bean
is required, since it retrieves data only as required. Smart data beans that require access
to the database should extend from the access bean for the corresponding entity bean.
For example, the ProductDataBean data bean extends the ProductAccessBean access
bean, which corresponds to the Product entity bean. Some smart data beans do not
require database access. For example, the PropertyResource smart data bean retrieves
data from a resource bundle, rather than the database.
A command data bean relies on a command to retrieve its data and is a more lightweight
data bean. The command retrieves all attributes for the data bean at once, regardless of
whether the JSP page requires them. As a result, for JSP pages that use only a selection
of attributes from the data bean, a command data bean can be costly in terms of
performance. While access control can be enforced on a data bean level when using the
smart data bean, this is not true for command data bean. Only use command data beans if
using a smart data bean is impractical.
A data bean implementing the InputDataBean interface retrieves data from the URL
parameters or attributes set by the view. Attributes defined in this interface can be used as
primary key fields to fetch additional data. When a JSP page is invoked, the generated
JSP servlet code populates all the attributes that match the URL parameters, and then
activates the data bean by passing the data bean to the data bean manager. The data
bean manager then invokes the data bean's setRequestProperties() method to pass all the
attributes set by the view.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 18 of 29

IBM Software Group

19

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce data beans

�All changes to entity beans are reflected in the
access beans and data beans immediately upon
regenerating them in Rational Application Developer

�Used in JSP pages to deliver dynamic database
content

�Two ways to activate:
�wcbase:useBean tag (recommended)

�Data bean manager activate method

A data bean normally extends an access bean. The access bean, which can be generated
by Rational Application Developer, provides a simple way to access information from an
entity bean. When modifications are made to an entity bean, the update is reflected in the
access bean as soon as the access bean is regenerated. An example of a modification
would be adding a new field, a new business method, or a new finder method. Since the
data bean extends the access bean, it automatically inherits the new attributes. As a result
of this relationship, no coding is required to enable the data bean to use new attributes
from the entity bean.

WebSphere Commerce data beans require activation before their use. WebSphere
Commerce provides a Commerce-specific version of the useBean tag, wcbase:useBean,
that performs data bean activation in a Java-free manner and is the recommended method
of data bean activation in store JSP pages. The activate method of the data bean
manager is a more generic method of activating a data bean and requires scriptlet code in
your JSP.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 19 of 29

IBM Software Group

20

Developing and customizing store business logic © 2008 IBM Corporation

Access control policies in WebSphere
Commerce
�Understanding access control policies
�Users

�Resources

�Actions

�Relationships

�Two levels of authorization control:
�WebSphere Application Server

�WebSphere Commerce (fine-grained)

�Access control is implemented as a means of supporting
authorization for resources

Access control in a WebSphere Commerce application is composed of four elements: users, actions,
resources, and relationships.

Users are the people that use the system. For access control purposes, users must be grouped into relevant
access groups. One common attribute that is used to determine membership of an access group is roles.
Roles are assigned to users on a per organization basis. Some examples of access groups include
registered customers, guest customers, or administrative groups like customer service representatives.

Actions are the activities that users can perform on the resource. For access control purposes, actions must
also be grouped into relevant action groups. For example, a common action used in a store is a view. A view
is invoked to display a store page to customers. The views used in your store must be declared as actions
and assigned to an action group before they can be accessed.

Resources are the entities that are protected. For example, if the action is a view, the resource to be
protected is the command that invoked the view, for example, ViewCommand. For access control purposes,
resources are grouped into resource groups.

Relationships are the relationship between a user and the resource requested. Access control policies might
require that a relationship between a user and the resource be satisfied. For example, users might only be
allowed to display the orders that they have created.

These four elements are combined to create access policies. Access control is based on a user’s context,
action invoked, resources used, and the relationships within the stores and site implementation.

In a WebSphere Commerce application, there are two main levels of access control. The first level of access
control is performed by the WebSphere Application Server. In this respect, WebSphere Commerce uses
WebSphere Application Server to protect enterprise beans and servlets. The second level of access control
is the fine-grained access control system of WebSphere Commerce.
The WebSphere Commerce access control framework uses access control policies to determine if a given
user is permitted to perform a given action on a given resource. This access control framework provides fine-
grained access control. It works in conjunction with, but does not replace, the access control provided by the
WebSphere Application Server.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 20 of 29

IBM Software Group

21

Developing and customizing store business logic © 2008 IBM Corporation

Types of access control

�There are two types of access control
�Command-level (broad)
� Also known as role-based

� Specifies that users assigned to a particular role can run certain
commands

�Resource-level (very fine)
� Specifies the relationship that a user must have with a resource

before a given action can be performed

There are two types of access control, both of which are policy-based: command-level
access control and resource-level access control.

Command-level, also known as role-based, access control uses a broad type of policy.
You can specify that all users of a particular role can run certain types of commands. For
example, you can specify that users with the Account Representative role can run any
command in the AccountRepresentativesCmdResourceGroup resource group. All
controller commands must be protected by command-level access control. In addition, any
view that can be called directly, or that can be launched by a redirect from another
command must be protected by command-level access control. Command-level access
control determines whether a user is allowed to run the particular command within the
store you have specified.
By contrast, resource-level access control uses a fine grain policy. If a command-level
policy allows a user to run a command, a subsequent resource-level access control policy
can be applied to determine if the user can access the resource in question. Resource-
level access policies define the relationship a user must have with a resource in order to
perform an action on it. For example, a seller administrator might be permitted to perform
an administrative task but only on resources that are owned by the organization for which
they are a seller administrator.

To summarize, in command-level access control the "resource" is the command itself and
the "action" is to run the command within the current store. The access control check
determines if the user is permitted to run the command within the current store. In
resource-level access control the "resource" is any protectable resource that the command
or bean accesses and the "action" is the command itself.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 21 of 29

IBM Software Group

22

Developing and customizing store business logic © 2008 IBM Corporation

Access control policy utilities

�Policies are defined in a specific XML format:
�See examples in <WC_HOME>\xml\policies\xml

�Create XML files that conform to DTDs in \xml\policies\dtd

�Can load through the SAR publish process

�Four tools to work with policies:
�acugload (Load access groups)

�acpload (Load policy groups)

�acpnlsload (Load NLS descriptions)

�acpextract (Extract policies and relationships)

�View policies in Organization Administration Console

All access control policies are defined in XML format. You can look at any of the
predefined WebSphere Commerce policies for an example of how to create your policy.
DTD documents are provided to define the expected format.

When you publish a new store using the Store Archive (SAR) publish process, the access
control policies defined for that store are loaded automatically.

If you create or update access control policies for an existing store, they need to be loaded
into the WebSphere Commerce database to take effect. There are three utility tools that
you can make use of when loading access control policies. The acugload utility loads the
XML files containing the user (access) group definitions. The acpload utility loads the XML
files containing the main access control policies and the acpnlsload utility loads the XML
files containing the display names and descriptions. If you need to retrieve access control
policies that have already been loaded you can use the acpextract utility. It extracts the
access control policy and access group information in the database and generates files
that capture the information in XML format. It uses an input filter XML file to specify the
data to extract from the database.

Once your policies are loaded, you can view them using the Organization Administration
Console. It is also possible to change existing policies through this tool.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 22 of 29

IBM Software Group

23

Developing and customizing store business logic © 2008 IBM Corporation

Sample components to customize

�Business policy framework

�WebSphere Commerce subsystems

�WebSphere Commerce customizable features

The remaining slides introduce you to some of the commonly customized components and
features of WebSphere Commerce. The business policy framework is discussed followed
by an overview of the various WebSphere Commerce subsystems, and finally some
additional customizable features. This presentation does not go into detail on specific
customization strategies for each component however the techniques covered so far form
the basis of most customization tasks. You can find detailed information and customization
notes on each of the components discussed in the Information Center.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 23 of 29

IBM Software Group

24

Developing and customizing store business logic © 2008 IBM Corporation

Business policy framework (WebSphere
Commerce Enterprise)
�Business policies

�Business accounts

�Contracts and service agreements

� Terms and conditions

Business policies are sets of rules followed by a store or group of stores that define business processes, industry
practices, and the scope and characteristics of a store or group of stores offerings. Business policies also define how the
store or site interacts with customers and other business partners. For example, your site might have business policies
determining when and how customers are allowed to return products to a store, or business policies that determine what
payment methods your store accepts.
WebSphere Commerce provides a framework that allows you to implement your store's business policies in your online
store or site. The business policy framework consists of business policies, business accounts, contracts and service
agreements and terms and conditions.
In most instances, you will have predefined business policies for your business that you need to implement in your
online store or site. WebSphere Commerce provides a set of business policies that you can use as is, or change to meet
your needs. Business accounts define the relationship between a customer and your business. Business accounts track
contracts and orders for customer organizations and configure how buyers from customer organizations shop in a store.
Before a customer or business partner, for example resellers or distributors, can access your store, you must create a
contract or service agreement that defines customer or business partner access to your store. In the WebSphere
Commerce business policy framework, you create contracts for customers and service agreements for other types of
business partners. A contract with a customer defines what areas of your store the customer can access, what prices
the customer will see, and for how long the customer has access to your site and those prices. All stores must contain at
least one contract, as without a contract no one but internal administrators can access your store. WebSphere
Commerce provides a default contract that applies to all customers shopping at a store. A service agreement with a
business partner (business partners can be resellers, distributors, manufacturers, suppliers, or other partners) defines
your arrangement with the business partner. For example, a service agreement with a reseller might define what access
the reseller has to your site, whether they can share your catalog, or whether you host a store for them. A service
agreement with a distributor might define how customers to your site can receive quotes from a distributor, or how
customers can access the distributors site from yours. Finally, terms and conditions define how contracts and service
agreements are implemented for a particular customer or business partner. For contracts, terms and conditions define
what is being sold under the contract; the price of the items being sold; how the items are shipped to the customer; and
how the customer pays for the order. For service agreements with business partners, terms and conditions can restrict
the products the business partner is allowed to sell. Terms and conditions typically reference business policies as most
aspects of a site or stores operations are defined by business policies. Terms and conditions provide standard
parameters for the business policies they reference. Providing parameters to the business policies allows you to modify
the behavior of business policies for each contract.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 24 of 29

IBM Software Group

25

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce subsystems

�Catalog subsystem

�Marketing subsystem

�Member subsystem

�Order management subsystem

�Payments subsystem

�Trading subsystem

The catalog subsystem is a component of the WebSphere Commerce Server that provides online catalog
navigation, partitioning, categorization, and associations. In addition, the catalog subsystem includes support
for personalized interest lists and custom catalog display pages. The catalog subsystem contains all logic
and data relevant to an online catalog, including catalog groups (or categories), catalog entries, and any
associations or relationships among them.

The Marketing subsystem provides numerous marketing concepts to your site, designed to increase brand
awareness, and to attract and retain customers. Components of the marketing subsystem provide
functionality to create marketing campaigns, including customer segments and advertising; and e-mail
activities. All of these components can be extensively customized to ensure that your site marketing strategy
matches that of your brick and mortar store.

The Member subsystem is a component of the WebSphere Commerce Server that includes data for
participants of the WebSphere Commerce system. A member can be a user, a group of users, or an
organizational entity. Business logic in the Member subsystem provides member registration and profile
management services. Other services which are closely related to the Member subsystem include access
control, authentication, and session management.

The Order management subsystem supports order capture in addition to order, inventory and payment
processing. Order capture provides functionality such as sales quotes and shopping carts and order
submission. There are many ways to create shopcarts and submit orders. Order processing is responsible
for the overall coordination of inventory allocation, payment processing, releasing the order to fulfillment, and
tracking order status. WebSphere Commerce supports two inventory systems: Available to promise (ATP)
and non-ATP. The interface to inventory is encapsulated by a single inventory task command, which in turn
invokes either ATP or non-ATP task commands. WebSphere Commerce Payments supports the use of
payment plug-ins for offline or online payment processing.

New in WebSphere Commerce version 6, the Payments subsystem is included in the WebSphere
Commerce Server. The WebSphere Commerce instance contains payment information. The Payments
subsystem connects to Payment Service Providers by using payment plug-ins. The new Payments
subsystem is introduced in the Payments Technical Overview presentation.

The trading subsystem in WebSphere Commerce provides the logic, function and data relevant for
negotiating the price and quantity of a product or set of products between the buyer and seller organization.
The trading subsystem includes auctions, contracts, and Request for Quote components that are used to
carry out specific transactions between organizations.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 25 of 29

IBM Software Group

26

Developing and customizing store business logic © 2008 IBM Corporation

WebSphere Commerce customizable features

�Currency

�Returns

�Tax codes

�Calculation framework

You can display prices in your site in one currency, or you can use multiple currencies. For a site with
multiple stores, you can use different currencies for the stores, or you can assign currencies to the store
group. Depending on the type of site that you are creating, you can specify what currencies you want to use
and how they are displayed. You can also allow customers to select a shopping currency. If a currency you
want to support is not in the store by default you can add it to the CURLIST table to provide support.
Every product that is modified within a return goes through an automatic approval process. With the
appropriate level of security, manual approval can be issued, but for a typical return, automatic approval is
easier. Automatic approval consists of a series of tests on the specified product and its relationship to the
rest of the return, other returns, and the original order. For each unsuccessful test, a denial reason is logged
against the return item. The reasons can be presented to a Customer Service Representative who can
override the system evaluation and issue a manual approval.
A tax calculation code indicates the tax calculation for order items. A store typically collects two type of taxes:
sales or use tax, and shipping tax. The tax codes are unique within each tax type for a store. Only one tax
calculation code of each tax type is applied to a particular order item. Tax calculation codes can be classified
for convenience. A tax code scheme consists of a group of tax code classifications. A store typically uses a
single tax code scheme. TaxCategory objects correspond to the different kinds of tax that a store might be
required to collect, such as federal, state or provincial, and municipal. Taxes for each TaxCategory object are
calculated in ascending sequence by their sequence attributes.
Web commerce systems need to calculate monetary amounts and apply them to business objects. Business
rules and legal requirements specify how and when these monetary amounts should be calculated. When
these rules and requirements change, a good Web commerce system can adapt to the changes with little or
no programming changes. WebSphere Commerce provides a flexible, generic framework that can be used to
implement different kinds of calculations and apply them to the business objects. The framework can handle
a wide variety of business and legal requirements without programming. WebSphere Commerce provides
many method implementations from which you can select to do the calculations. If business or legal
requirements require a programming change, you can make many such changes just by programming
additional method implementations, without having to change existing programming. These implementations
can be overridden.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 26 of 29

IBM Software Group

27

Developing and customizing store business logic © 2008 IBM Corporation

Summary

�Command framework

�Business context service

�Command programming model

�Customizable components

This presentation introduced you to developing and customizing WebSphere Commerce
store business logic. The command framework was discussed in detail followed by an
introduction to the new business context service. Customization methodology was
discussed in the command programming model section and the presentation concluded
with a discussion of customizable business components in WebSphere Commerce.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 27 of 29

IBM Software Group

28

Developing and customizing store business logic © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:
mailto:iea@us.ibm.com?subject=Feedback_about_wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt

This module is also available in PDF format at:
../wcs60_DevelopingAndCustomizingStoreBusinessLogic.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 28 of 29

IBM Software Group

29

Developing and customizing store business logic © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM Rational WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

EJB, Java, JSP, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

wcs60_DevelopingAndCustomizingStoreBusinessLogic.ppt Page 29 of 29

