

IBM Software Group

®

WebSphere ® Commerce V6.0

Logging and tracing custom code

© 2008 IBM Corporation

Updated June 6, 2008

This presentation covers WebSphere Commerce version 6 logging and tracing, and
provides an introductory look at how to implement logging and tracing for custom code.

wcs60_TracingCustomCode.ppt Page 1 of 22

IBM Software Group

2

Logging and tracing custom code © 2008 IBM Corporation

Agenda

� Introduction

� WebSphere logging facilities and Java logging

� Adding logging to your code

� Using adequate logging levels

� Tracing in WebSphere Application Server

� Creating the trace specification

� Locating the trace files

� Conclusion

In this presentation, these topics are discussed:

You begin by reviewing the WebSphere logging facilities and the Java logging API.

Next, you learn how you can enhance the maintainability of your code by adding logging,

and see the different logging levels and recommendations.

Finally, you learn how to configure tracing using the WebSphere Application Server

administrative console.

wcs60_TracingCustomCode.ppt Page 2 of 22

IBM Software Group

3

Logging and tracing custom code © 2008 IBM Corporation

Introduction

�Many implementations do not provide adequate
logging and tracing to assist during
troubleshooting.

�Either logging is altogether missing or used
incorrectly.

�You learn how easily logging can be integrated into
custom code.

�You can study an example of how to set up your
system to use custom logging.

Even though logging is a key tool for problem determination, it is not uncommon to find

code that does not implement it, or it does not use it effectively.

This presentation shows how you can implement logging for your custom code.

Subsequent slides look at the logging facilities offered by WebSphere Application Server

version 6, and show examples of best practices on how to make your logging more

effective.

wcs60_TracingCustomCode.ppt Page 3 of 22

IBM Software Group

4

Logging and tracing custom code © 2008 IBM Corporation

WebSphere logging facilities and Java logging

� Java logging can be used to implement logging for
your applications in Application Server V6.0.

�WebSphere Application Server V6.0 fully
integrates Java™ Logging API (java.util.logging).

� Features such as file management, runtime
configuration, and administration through the
administrative console or wsadmin tool can be
used when implementing trace with Java logging.

�Previously the logging standard in Application
Server V5 was JRas. This has since been
deprecated.

Starting with versions 5.6.1 (fix pack 1 and higher) and 6.0, WebSphere Commerce
supports WebSphere Application Server V6.0.

This version of the application server fully integrates the Java logging API, which was
added in Java 1.4 to provide advanced control of informational output from applications.

In WebSphere Application Server version 6, you can implement logging for your code
using the Java logging standard. This allows you to take advantage of the WebSphere
logging features such as file management, runtime configuration, and administration
through the administrative console or the wsadmin tool. These are described in detail in
the upcoming slides.

The JRas framework, which was the logging standard in WebSphere Application Server
V5, has been deprecated. If you have implemented logging using JRas, your application
continues to work. However, if you face a new implementation, use Java logging instead.

wcs60_TracingCustomCode.ppt Page 4 of 22

IBM Software Group

5

Logging and tracing custom code © 2008 IBM Corporation

Adding logging to your code

package com.mycompany.commerce;

import java.util.logging.Level;

import java.util.logging.Logger;

public class ExtGetContractUnitPriceCmdImpl extends GetContractUnitPriceCmdImpl {

private static final String CLASS_NAME = ExtGetContractUnitPriceCmdImpl.class.getName();

private static Logger logger = Logger.getLogger(CLASS_NAME);

public void performExecute() throws ECException {

final String methodName = "performExecute";

if (logger.isLoggable(Level.FINER))

logger.entering(CLASS_NAME, methodName, "userId= " + getCommandContext().getUserId());

try {

super.performExecute();

boolean a = someOtherFuntion();

if (logger.isLoggable(Level.FINE))

logger.logp(Level.FINE, CLASS_NAME, methodName, “someOtherFunction returned " + a);

} catch (Exception e) {

logger.logp(Level.SEVERE, CLASS_NAME, methodName, e.getClass().getName() + "Your Logging Message", e);

}

logger.exiting(CLASS_NAME, methodName);

}

}

This slide provides a sample WebSphere Commerce command that implements Java
Logging. The lines that have been highlighted in red correspond to the different APIs that
are used for logging. In the next few slides, the code is broken down so the different
sections can be explained in detail.

wcs60_TracingCustomCode.ppt Page 5 of 22

IBM Software Group

6

Logging and tracing custom code © 2008 IBM Corporation

Adding logging: Importing the required
packages

package com.mycompany.commerce;

import java.util.logging.Level;

import java.util.logging.Logger;

public class ExtGetContractUnitPriceCmdImpl extends GetContractUnitPriceCmdImpl {

private static final String CLASS_NAME = ExtGetContractUnitPriceCmdImpl.class.getName();

private static Logger logger = Logger.getLogger(CLASS_NAME);

public void performExecute() throws ECException {

final String methodName = "performExecute";

if (logger.isLoggable(Level.FINER))

logger.entering(CLASS_NAME, methodName, "userId= " + getCommandContext().getUserId());

try {

super.performExecute();

boolean a = someOtherFuntion();

if (logger.isLoggable(Level.FINE))

logger.logp(Level.FINE, CLASS_NAME, methodName, “someOtherFunction returned " + a);

} catch (Exception e) {

logger.logp(Level.SEVERE, CLASS_NAME, methodName, e.getClass().getName() + "Your Logging Message", e);

}

logger.exiting(CLASS_NAME, methodName);

}

}

If your command uses Java logging, the first step is to import the necessary classes. In
this case, the code imports the Level and Logger classes that belong to the Java util
logging package.

wcs60_TracingCustomCode.ppt Page 6 of 22

IBM Software Group

7

Logging and tracing custom code © 2008 IBM Corporation

package com.mycompany.commerce;

import java.util.logging.Level;

import java.util.logging.Logger;

public class ExtGetContractUnitPriceCmdImpl extends GetContractUnitPriceCmdImpl {

private static final String CLASS_NAME = ExtGetContractUnitPriceCmdImpl.class.getName();

private static Logger logger = Logger.getLogger(CLASS_NAME);

public void performExecute() throws ECException {

final String methodName = "performExecute";

if (logger.isLoggable(Level.FINER))

logger.entering(CLASS_NAME, methodName, "userId= " + getCommandContext().getUserId());

try {

super.performExecute();

boolean a = someOtherFuntion();

if (logger.isLoggable(Level.FINE))

logger.logp(Level.FINE, CLASS_NAME, methodName, “someOtherFunction returned " + a);

} catch (Exception e) {

logger.logp(Level.SEVERE, CLASS_NAME, methodName, e.getClass().getName() + "Your Logging Message", e);

}

logger.exiting(CLASS_NAME, methodName);

}

}

Adding logging: Setting a name for your logger

The next step is to define a logger and give it a name. The name of the logger is important

because it defines an implicit hierarchy. In the example, the logger takes the name of the

class where it is defined.

With this technique, you can achieve a very fine level of granularity.

By naming the logger the same as the class where it is used, the logger hierarchy matches

that of the packages and classes. This allows you to enable tracing for a package and all

the packages under it, or for a particular class.

Other common techniques include using the package as the logger name, or to name the

logger to match the functionality they provide, such as orders, catalog, and so on.

Notice that the class name is saved as a static String. This is done because the name is

reused when logging messages.

wcs60_TracingCustomCode.ppt Page 7 of 22

IBM Software Group

8

Logging and tracing custom code © 2008 IBM Corporation

package com.mycompany.commerce;

import java.util.logging.Level;

import java.util.logging.Logger;

public class ExtGetContractUnitPriceCmdImpl extends GetContractUnitPriceCmdImpl {

private static final String CLASS_NAME = ExtGetContractUnitPriceCmdImpl.class.getName();

private static Logger logger = Logger.getLogger(CLASS_NAME);

public void performExecute() throws ECException {

final String methodName = "performExecute";

if (logger.isLoggable(Level.FINER))

logger.entering(CLASS_NAME, methodName, "userId= " + getCommandContext().getUserId());

try {

super.performExecute();

boolean a = someOtherFuntion();

if (logger.isLoggable(Level.FINE))

logger.logp(Level.FINE, CLASS_NAME, methodName, “someOtherFunction returned " + a);

} catch (Exception e) {

logger.logp(Level.SEVERE, CLASS_NAME, methodName, e.getClass().getName() + "Your Logging Message", e);

}

logger.exiting(CLASS_NAME, methodName);

}

}

Adding logging: Logging method entry and exit

It is a common practice to log method entry and exit for important methods. This can help
you narrow down the code where the application is failing. Logger entering and exiting
are convenience methods that use the FINER level.

In the example, the method name is stored in a read only string because the name is used
every time you log a message.

Next, the logger.entering method is called if the logger is currently logging messages that
use the FINER level. If you did not have this check, the code would be calling the
getCommandContext getUserId method and the string concatenation every time the
function is called, regardless of the level. Adding this check minimizes the overhead of
tracing in your application.

Finally, the method exit is logged using logger.exiting. Since the method is called using
static parameters, the isLoggable API is not used.

wcs60_TracingCustomCode.ppt Page 8 of 22

IBM Software Group

9

Logging and tracing custom code © 2008 IBM Corporation

package com.mycompany.commerce;

import java.util.logging.Level;

import java.util.logging.Logger;

public class ExtGetContractUnitPriceCmdImpl extends GetContractUnitPriceCmdImpl {

private static final String CLASS_NAME = ExtGetContractUnitPriceCmdImpl.class.getName();

private static Logger logger = Logger.getLogger(CLASS_NAME);

public void performExecute() throws ECException {

final String methodName = "performExecute";

if (logger.isLoggable(Level.FINER))

logger.entering(CLASS_NAME, methodName, "userId= " + getCommandContext().getUserId());

try {

super.performExecute();

boolean a = someOtherFuntion();

if (logger.isLoggable(Level.FINE))

logger.logp(Level.FINE, CLASS_NAME, methodName, “someOtherFunction returned " + a);

} catch (Exception e) {

logger.logp(Level.SEVERE, CLASS_NAME, methodName, e.getClass().getName() + "Your Logging Message", e);

}

logger.exiting(CLASS_NAME, methodName);

}

}

Adding logging: Logging operations

This is another example of logging entries in your application. In this case, the level used
is FINE. The isLoggable method is used again to prevent the string concatenation if
tracing is not enabled.

wcs60_TracingCustomCode.ppt Page 9 of 22

IBM Software Group

10

Logging and tracing custom code © 2008 IBM Corporation

Using adequate logging levels

ALL All Enabled

FINEST

FINER

FINE Tracing

CONFIG

INFO Information

WARNING

SEVERE Error

OFF All Disabled

Level Type
en

ab
le

s
th

e
on

es
 a

bo
ve

When logging a message, it is very important that you use the logging levels correctly.
This slide shows the different levels available grouped by usage.

Logging levels can be broken down in three categories. Error and Warning, Informational
and Tracing. When you enable logging at one level, you are also enabling it for all the
levels above it.

This means that when you enable logging at a the FINE level, for example, all
informational and error messages are also logged.

wcs60_TracingCustomCode.ppt Page 10 of 22

IBM Software Group

11

Logging and tracing custom code © 2008 IBM Corporation

Using adequate logging levels: Error

ALL All Enabled

FINEST

FINER

FINE Tracing

CONFIG

INFO Information

WARNING

SEVERE Error

OFF All Disabled

Level Type
en

ab
le

s
th

e
on

es
 a

bo
ve

Always log error conditions using SEVERE or WARNING. This ensures that exceptions

are logged, even when logging is set to a minimum.

If the error condition needs to be propagated to the store front, use the WebSphere

Commerce Command error handling framework,

which creates internationalized messages and allows you to specify an error view.

wcs60_TracingCustomCode.ppt Page 11 of 22

IBM Software Group

12

Logging and tracing custom code © 2008 IBM Corporation

Using adequate logging levels: Information

ALL All Enabled

FINEST

FINER

FINE Tracing

CONFIG

INFO Information

WARNING

SEVERE Error

OFF All Disabled

Level Type
en

ab
le

s
th

e
on

es
 a

bo
ve

WebSphere Application Server is configured to INFO by default, and you should keep it

set at this level, because most messages are logged at this level.

Use the INFO level carefully because too much logging affects the performance of your

application.

For example, do not use INFO levels for commands, such as OrderItemAdd, that are run

from the store front because they can flood the logs with messages.

If the message you want to log is likely to be printed in a common operation you should

consider using a tracing level instead.

wcs60_TracingCustomCode.ppt Page 12 of 22

IBM Software Group

13

Logging and tracing custom code © 2008 IBM Corporation

Using adequate logging levels: Tracing

ALL All Enabled

FINEST

FINER

FINE Tracing

CONFIG

INFO Information

WARNING

SEVERE Error

OFF All Disabled

Level Type
en

ab
le

s
th

e
on

es
 a

bo
ve

FINE, FINER and FINEST are meant to be used for tracing and debugging.

The different levels can help you prevent the “all or nothing” problem, where your

application either gives too much information or no information at all.

One way of deciding which level to use is to consider their impact while the trace is

enabled.

To minimize performance degradation, you can organize your messages to use the

different levels. For example, use FINER or FINEST for normal messages, but use only

FINE for messages where you know a large amount of trace data is generated.

Keep in mind that you can change the trace level for a running server. Because of this,

the trace levels should only be used while debugging a particular problem, and the level

should be set back to INFO once the problem is resolved.

wcs60_TracingCustomCode.ppt Page 13 of 22

IBM Software Group

14

Logging and tracing custom code © 2008 IBM Corporation

Tracing in WebSphere Application Server

� Enable the loggers
you have defined
using the
WebSphere
administrative
console

� Change the trace
at the configuration
and runtime levels

� Enable tracing on a
running server and
it is the preferred
method for
debugging

Using the WebSphere administrative console, you can view and edit the trace
specification. The console shows you two tabs, Configuration and Runtime.

Configuration trace takes effect during startup and requires a restart. Runtime trace sets a
new trace on a running server.

You can change the current trace specifications without having to restart the server. This
technique is the preferred mechanism for debugging.

Configuration should be used with logging levels that are permanent. You should avoid
using trace levels in the configuration tab because they might have an impact on the
performance of the system.

wcs60_TracingCustomCode.ppt Page 14 of 22

IBM Software Group

15

Logging and tracing custom code © 2008 IBM Corporation

Tracing using the wsadmin utility

�Control the trace
through scripting
using the wsadmin
tool

�Best option when
you do not have
access to the
Administrative
console or you
want to automate
tracing during
certain events.

D:\WebSphere\AppServer\profiles\demo\bin>wsadmin
WASX7209I: Connected to process "server1" on node
WC_demo_node using SOAP connector; The type of process
is: UnManagedProcess
WASX7029I: For help, enter: "$Help help"
wsadmin> set traceServ [$AdminControl
completeObjectName type=TraceService,*]
WebSphere:platform=proxy,cell=WC_demo_cell,version=6.0.2.
23,name=TraceService,mbeanIdentifier=cells/WC_demo_cell/n
odes/WC_demo_node/servers/server1/server.xml#TraceServic
e_1200408277544,type=TraceService,node=WC_demo_node,
process=server1
wsadmin> $AdminControl setAttribute $traceServ
traceSpecification
com.ibm.websphere.commerce.WC_ORDER=all
wsadmin> $AdminControl getAttribute $traceServ
traceSpecification
*=info:com.ibm.websphere.commerce.WC_ORDER=all
wsadmin> $AdminControl setAttribute $traceServ
traceSpecification "*=info"
wsadmin> $AdminControl getAttribute $traceServ
traceSpecification
*=info

WebSphere also allows you to control the trace through scripting using the wsadmin tool.
This is the best option when you do not have access to the administrative console or you
want to automate tracing during certain events.

You can find more details in the developerWorks article Using logging and tracing in
the WebSphere Commerce custom code.

See the References slide at the end of the presentation.

wcs60_TracingCustomCode.ppt Page 15 of 22

IBM Software Group

16

Logging and tracing custom code © 2008 IBM Corporation

Creating the trace specification
� The trace specification defines the level that is used by each logger.

� It can be created manually or by selecting the components in the loggers tree

� The trace is defined by specifying the name of the logger , an equal sign, and
the level required. You can specify multiple loggers by separating them with
colons

� You can use the asterisk (*) as a wildcard to indicate that you want to set the
level for all the loggers that begin with a certain name

Examples:

To log the ExGetContractUnitPriceCmdImpl custom class at the FINE level and WebSphere
Commerce Contract tracing use:

com.ibm.websphere.commerce.WC_CONTRACT=all:com.mycompany.commerce
.ExGetContractUnitPriceCmdImpl=FINE

To enable Logging for all Commerce custom classes use:

com.mycompany.commerce*=all

To enable or disable logging, update the trace specification that defines the levels that are
used for each logger.

The trace is defined by specifying the name of the logger , an equal sign, and the level
required. You can specify multiple loggers by separating them with colons. You can use
the asterisk to indicate that you want to set the level for all the loggers that begin with a
certain name.

This slide shows two examples.

The first example shows how to enable trace specifications for WebSphere Commerce.

The second example shows you how to specify a trace using the asterisk wildcard
notation.

Assuming that you followed the convention and named the loggers using the class names,
this should enable tracing for the all of your custom code.

wcs60_TracingCustomCode.ppt Page 16 of 22

IBM Software Group

17

Logging and tracing custom code © 2008 IBM Corporation

Where does the trace go?

� The log entries created from your custom code go to the
same files where the WebSphere Commerce and
WebSphere Application Server messages are written

� Your code takes advantage of the file rotation facility built
in WebSphere Application Server

AppServer\profiles\profileName\logs\server1\ WCToolkitEE60\wasprofile\logs\server1 trace.log

AppServer\profiles\profileName\logs\server1\ WCToolkitEE60\wasprofile\logs\server1 SystemOut.log

Runtime Developer Log

When you enable tracing for your custom code, the log entries are written to the files you

are already familiar with, namely SystemOut.log and trace.log.

Both custom and WebSphere tracing go to the same file, making it easier to debug a

particular problem that requires multiple traces to be enabled.

Also, by using the WebSphere files, your trace is taking advantage of the file rotation

facility offered by the WebSphere Application Server.

wcs60_TracingCustomCode.ppt Page 17 of 22

IBM Software Group

18

Logging and tracing custom code © 2008 IBM Corporation

Where does the trace go?

�Different files are written depending on the
logging level used

NO NO YES Tracing

YES

YES

SystemOut.log

NO YES Information

NO YES Error

SystemErr.log trace.log

Depending on the logging level used by your messages, the entries go to different files

Error and Warning, and Information messages are logged in both, trace.log and
SystemOut.log.

Trace messages are only printed in trace.log but not in SystemOut.log

wcs60_TracingCustomCode.ppt Page 18 of 22

IBM Software Group

19

Logging and tracing custom code © 2008 IBM Corporation

References

For more information, refer to material listed below:

� Using logging and tracing in the WebSphere Commerce
custom code

http://www.ibm.com/developerworks/websphere/library/techarticles/0802_voldman/0802_voldman.html

� WebSphere Commerce: Trace components
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp?topic=/com.ibm.commerce.admin.doc/refs/rlslogging.htm

� WebSphere Application Server: Enabling trace on a running

server
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/ttrb_entrrs.html

This slide contains useful links from the WebSphere Commerce and WebSphere
Application Server Information Centers.

The first reference “Using logging and tracing in the WebSphere Commerce custom code”
is a developerWorks article that this presentation was based upon. Refer to this article for
more detailed information on this topic.

wcs60_TracingCustomCode.ppt Page 19 of 22

IBM Software Group

20

Logging and tracing custom code © 2008 IBM Corporation

Conclusion

� Logging and tracing improves the serviceability of
your code and it is a great tool for troubleshooting
problems.

� Implementing logging using the Java Logging
framework is a straightforward process

�You can take advantage of all the WebSphere
Application Server logging facilities such as:
�Runtime logging

�Configuration through the administrative console and wsadmin

�File rotation

Implementing logging and tracing in WebSphere Application Server V6 using the Java
Logging framework is a straightforward process.

This presentation showed, by implementing Java logging and following a few best
practices, you can improve the serviceability of your code and your ability to troubleshoot
problems.

wcs60_TracingCustomCode.ppt Page 20 of 22

IBM Software Group

21

Logging and tracing custom code © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_wcs60_TracingCustomCode.ppt

This module is also available in PDF format at: ../wcs60_TracingCustomCode.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

wcs60_TracingCustomCode.ppt Page 21 of 22

IBM Software Group

22

Logging and tracing custom code © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

wcs60_TracingCustomCode.ppt Page 22 of 22

