WebSphere Commerce V7 Feature Pack 4

REST services

© 2012 1BM Corporation

This presentation provides an introduction to the WebSphere Commerce REST services
framework.

RESTServices.ppt Page 1 of 47

= Architecture overview
= Examples
= Customization

= Problem determination

2 REST Services © 2012 1BM Corporation

This presentation begins with an overview of the REST services solution architecture.
Following the architecture overview is a series of examples that demonstrate the concepts
covered in the overview. This presentation concludes with some example customization
scenarios and problem determination tips.

RESTServices.ppt Page 2 of 47

eeeeeee

Architecture overview

© 2012 1BM Corporation

This section introduces the REST services framework architecture.

RESTServices.ppt

Page 3 of 47

= Lighter weight than SOAP-based web services
= Easily adopted by a variety of clients

= Use existing HTTP verbs
— GET, POST, PUT, DELETE

= Provide responses in any Internet media type
—JSON, XML, HTML, etc

4 REST Services © 2012 1BM Corporation

REST services provide an alternate way of implementing a client-server communication
model than SOAP-based web services. These lighter weight, simpler services can be
easily adopted by a wide variety of clients. Some examples are discussed later in this
presentation. Rather than defining an action verb within the service request as SOAP
services do, REST services make use of the existing GET, POST, PUT and DELETE
verbs supported by HTTP. The response format back to the client can be any internet
media type. Common response types include JSON, XML and HTML.

RESTServices.ppt Page 4 of 47

5

Presentation layer

Storefront and WebSphere

SDO tag library

Control Layer

SDO tag library

SD0O tag library

Commerce Accelerator Sales Center Portal Management Center Android applications
J5P pages, HTML, Eclipse Rich JSP. HTML,
JSTL Struts Tags Client Platform JSTL, Portiet Tags &S D Java
Controller layer
Storefront and WebSphere Management Center RESTiul client
Commerce Accelerator Sales Center Portal Web application applications
Struts servlet and Sales Canter MVC portlet and Struts serviet and REST services and

JEHRS

Business logic layer

WebSphere Commerce services

!

Name-value pair
processing commands

l

BOD processing

commands

Persistence layer

REST Services

© 2012 1BM Corporation

The diagram shows where REST services fit in the overall WebSphere Commerce
architecture. REST services act as a controller layer between RESTful client applications,
such as the sample Android application, and the WebSphere Commerce business logic
layer. The REST service framework makes use of the JAX-RS API to manage incoming
resource requests and outgoing responses. The REST services invoke the existing
WebSphere Commerce services to process the incoming request.

RESTServices.ppt

Page 5 of 47

6

REST clients

Mobile > Web <> Social

Kiosk desktop

WebSphere Commerce server

REST services abstraction

OAGIS BOD Sacurity nergration
DSL! DB DAuth services

Legend

Internet

<> On-Premise

REST Services

© 2012 1BM Corporation

Here are several examples of clients that might use REST services to communicate with
WebSphere Commerce.

For mobile applications, REST services allow the application to use device-specific native
user interfaces, or an embedded web browser for the user experience and REST services
for data and updates. Web applications can include traditional storefronts or other
websites that provide WebSphere Commerce functionality through REST services. Kiosk
applications can use WebSphere Commerce services to bridge in-store shoppers with the
online stores and services. Finally, social applications are rendered within social
containers such as Facebook. Social applications can extend shopping and customer

experiences.

RESTServices.ppt

Page 6 of 47

= Definition
— Java API for RESTful web services

= Benefits

— High-level declarative programming model that simplifies the development of RESTful
web services

— Built-in support for best-practice HTTP usage patterns and conventions

= Library
— Apache Wink

7 REST Services

© 2012 1BM Corporation

JAX-RS, the Java API for RESTful web services, is used to simplify the development of
new RESTful web services. JAX-RS runtime handles the processing of incoming client
requests and responses from the WebSphere Commerce server. The API also provides
support for best practices when developing new services. WebSphere Commerce is using
the Apache Wink implementation of JAX-RS.

RESTServices.ppt Page 7 of 47

= Resource
— Logical entity that can be created, retrieved, updated, and deleted

= Representation
— The resource rendered in a specific format

= Resource handler
— A JAX-RS class that provides the various method handlers for a resource
— Uses the @Path annotation to indicate which URLSs the class handles

= Data object mapper
— A configuration file that transforms a resource representation to/from BOD attributes

= Entity provider
— A Java class that transforms between Java types and representation formats

8 REST Services © 2012 1BM Corporation

This slide defines several terms you will see in this presentation. A resource is a logical
entity that the client can interact with, such as a shopping cart. A representation is a
specific form of the resource, such as JavaScript Object Notation (JSON) object. Incoming
REST service requests for a specific resource are routed to a resource handler. This is a
Java class that provides method handlers for various types of resource requests, such as
create and update. The @Path annotation is used to define which resources a specific
class handles. A data object mapper is a configuration file responsible for converting
between the Business Object Document (BOD) representation of a resource and its JSON
representation. Finally, an entity provider is a Java class that transforms a resource from
its server-side representation into the response format expected by the calling service.

RESTServices.ppt Page 8 of 47

Client
[web

app,
mobile native app,
Bte)

" HTTF reguest (JSQN) Ao [FEP 1) 7 | Security
Authentication reguest | 4 1| GET/PUTIPOSTIDELETE E’ tokens
POST (ISON) (Secuity tokens f recuied) SONIFEF 4)

WehSphere Commerce

Rest web module
Request Handlers Entity Providers
Context Providers (business...) (JSOHZML)
| i |. JSP Templates
Resource Hangdler (XHTNI_IJ{.TOM]
Member Service
Sarvice Client
Client Data Mapper
data mapping files,
2 I:il I:EI I:EI tr(ansfurmggungulility]
*

:I QAGIS Business
SErvice
Object
reguest
i Docurnent

]
—{]
=

Security Runtime

‘ WehSphere Commerce OAGIS Services

9 REST Services © 2012 1BM Corporation

This diagram shows the interactions between the REST web module and other
WebSphere Commerce subsystems when handling authentication requests and regular
requests. The authentication flow is marked by the orange numbers and the regular
request flow is marked by the purple numbers. The authentication flow is explained first.

In step one, the client initiates an HTTP POST request to authenticate a registered
shopper or get a temporary identity for a guest shopper. At step two, the JAX-RS
framework invokes the request handler and matches the URL of the request to the
appropriate JAX-RS resource handler. The resource handler converts the HTTP request
into a WebSphere Commerce OAGIS service request to the member services. The
WebSphere Commerce OAGIS service returns the result containing authentication
information for the shopper in step three. In steps four and five, the REST layer calls the
security runtime to create authentication tokens, WCToken and WCTrustedToken, for
future requests. WCToken should be used in both non-secure and secure connections.
WCTrustedToken should be used in secure connections. In step six, the JAX-RS resource
invokes the entity provider to generate the response. Finally, in step seven, the response
is created and returned to the client.

Now, the regular request in the purple numbers is explained. In step one, the client
initiates a HTTP request, which can be GET, POST, PUT, or DELETE. If the related noun
operation requires authentication, the security tokens must be sent in the HTTP request
header. For non-secure requests, only the WCToken should be sent. For secure requests,
both the WCToken and WCTrustedToken should be sent. The Apache Wink JAX-RS
framework invokes the request handler in step two. The request handler creates the
business context and calls the security runtime to verify the authentication tokens. In step
three, the security runtime verifies the authentication tokens. Next, in step four, the
request handler converts the incoming REST request into a WebSphere Commerce
OAGIS service request. The service returns the result in BOD format in step five. In step
six, the data mapper configuration file for the response BOD is loaded by the entity
provider to convert the response to JSON. Finally, in step seven, the JSON response is
returned to the client.

RESTServices.ppt Page 9 of 47

= Available resources
— Rest.war\WebContent\WEB-INF\config\resources.properties
— Rest.war\WebContent\WEB-INF\config\resources-ext.properties

= Resource URI to access profile mapping
— Rest.war\WebContent\WEB-INF\config\com.ibm.commerce.rest\wc-rest-
resourceconfig.xml

10 REST Services © 2012 1BM Corporation

The available resource handlers need to be registered so that incoming requests can be
directed to them. There are two property files to register resource handlers, one
predefined file and one extensions file. When you create or modify a resource handler, you
should register the implementation in the extensions file.

In addition to the properties file to register resource handlers, there is also an XML
configuration file that maps resource URIs to the access profile to use when making the
corresponding WebSphere Commerce service request.

RESTServices.ppt Page 10 of 47

= Available providers
— Rest.war\WebContent\WEB-INF\config\providers.properties

— Rest.war\WebContent\WEB-INF\config\providers-ext.properties

= Available and default response formats
— Rest.war\WebContent\WEB-INF\config\com.ibm.commerce.rest\wc-rest-

responseformat.xml

11 REST Services © 2012 1BM Corporation

Entity providers also have a pair of property files for registering available implementations.
When you create or modify an entity provider, you should register the implementation in
the extensions file. For entity providers, there is an additional XML configuration file that
maps the supported response formats to their internet media types. This file also defines

the default response format.

RESTServices.ppt Page 11 of 47

= Catalog
— Navigation, search
— Product prices and inventory

Marketing
— e-Marketing spots

= User management
— Registration and authentication
— Account management
— Wish lists

Order management
— Shop carts
— Order status

= Location
— Store locator
— User location

12 REST Services © 2012 1BM Corporation

This slide summarizes the WebSphere Commerce resources that are accessible through
REST services in Feature Pack 4. All services are intended for business-to-consumer use
only. More information on individual services is available in the Information Center. A link
is provided on the resources page at the end of this presentation.

RESTServices.ppt Page 12 of 47

= HTTP methods
— GET, PUT, POST, DELETE
— Use "X-HTTP-Method-Override" if PUT and DELETE are not supported

» Resource URI
— http://mystore.com/wcs/resources/store/<storeld>/<resource_name>/<identifier>

= Input and output format is JISON
— XML also supported (input XML converted to JSON)

= Tips
— For POST/PUT methods, always set content-type to application/json or application/xml

— Once authenticated, pass WCToken for HTTP requests and WCToken and
WCTrustedToken for HTTPS requests

13 REST Services © 2012 1BM Corporation

A client calls a REST service by identifying the resource it wants to act on and the action it
wants to take. The action is one of GET, PUT, POST or DELETE. If PUT and DELETE are
not supported, you can use the “X-HTTP-Method-Override” property in the header to
specify the action. The resource to act on is specified by the URI. The URI has a fixed
portion “/wcs/resources/store” followed by a client-specified portion. The client specifies
the ID of the store for the request, the name of the resource and, if needed, an identifier
for the resource.

The default input and output format for WebSphere Commerce REST services is JISON.
XML is also supported as both an input and output format but XML input is converted to
JSON before the request is processed. A specific XML format is required for the input. The
details can be found in the WebSphere Commerce Information Center.

When you are passing input data in a POST or PUT request, make sure you set the
content-type attribute in the header to the internet media type you are using. When making
requests for an authenticated user, make sure the authentication tokens are included in
the header. The WCToken is needed for regular requests and both the WCToken and
WCTrustedToken are needed for secure requests.

RESTServices.ppt Page 13 of 47

= Server side caching
— Dynacache
— Configure which service responses can be cached
— Sample configuration provided in cachespec.xml

= Client-side caching
— Uses cache directives in response header
— Public and private resources can be cached
— Cachable resources configured in
» Rest.war/WEB-INF/config/com.ibm.commerce.rest/wc-rest-clientCaching.xml
— Custom cache configuration can be defined in
» Rest.war/WEB-INF/config/com.ibm.commerce.rest.ext/wc-rest-clientCaching.xml

14 REST Services © 2012 1BM Corporation

Caching REST service responses helps to improve the performance of your client
application. There are two types of caching available for REST services. Server-side
caching is the standard method of caching service responses. This caching method uses
dynacache and the cache configuration is defined in the cachespec.xml file. A sample
configuration is provided with Feature Pack 4. Client-side caching improves performance
even further by reducing calls to the server. By specifying cache directives in the response
header, you can identify public or private resources to be cached by the client.
WebSphere Commerce only makes use of public resource caching by default. The default
client-side caching is defined in the XML configuration file shown on the slide. You can
extend or modify the default cache policies by creating a custom file in an extension folder.

RESTServices.ppt Page 14 of 47

15

eeeeeee

Examples

© 2012 1BM Corporation

This section provides some examples to demonstrate the REST services framework.

RESTServices.ppt

Page 15 of 47

= Example 1: Service invocation
— Retrieving and using security tokens

= Example 2: GET request flow
— Get shopping cart

16 REST Services © 2012 1BM Corporation

The first example looks at service invocation and working with security tokens. The
second example looks at how a GET request is processed on the server side.

RESTServices.ppt Page 16 of 47

= From Madisons native Android application
— Customer logs in
» Secure POST
 Security tokens are received in the response
— Customer adds payment information for an order
 Security tokens are retrieved
» Secure POST with security tokens
— Customer updates their payment information
» Secure PUT with security tokens

17 REST Services © 2012 1BM Corporation

The code for the first example comes from the sample Madisons Android application. The
next five slides show how different types of requests are created and how security tokens
are managed. The example starts with customer authentication through logging in to the
store and continues on with payment information requests made by the logged in shopper
while checking out an order.

RESTServices.ppt Page 17 of 47

/4 Without header tokens
public String invokeSecurePostRestierviceForlogin(3tring url, J30NOhiject o)
{
HttpClient httpelient = getSecureHttpllient():
HttpPost request = new HttpPost{url):
request.addHeader (HTTP. CONTENT TYPE, APPLICATION J50N) ; 1
HetpEntity entity=null;
Jtring response =null;

"logonld": "testuserl",
try "logonPassword": "passwOrd"
i
if{ c '= null){
FtringEntity se = new ItringEntity(e.to3tring() , HTTP.UTF 4):
entity = =e;
regquest.setEntity (entity); 2
H
HttpResponse httpResponse = httpolient.execute (request) ; 3
18 REST Services © 2012 1BM Corporation

The method shown here is used to build the REST service request for a shopper to log in.
There are no tokens to pass in a login request, only the content type is set in the request
header. A JSON object containing the logon ID and password supplied by the shopper is
passed as the content of this secure POST request. The last line shown initiates the
request and captures the response back.

The number one on the slide shows where the request header is set, the number two
shows where the content is set for the POST request. An example of the content is shown
in the call-out on the slide. The number three shows the REST service being invoked.

RESTServices.ppt Page 18 of 47

{ "userld": ""1003", "WCToken" :
"XOXOXXEKIXHKXIXHKKXHKKXKXXXXXX

"WCTrustedToken" :
FIXXXXXX XX KKK KX XXX XK XXXXXXX" ",
"personalizationld”™ : "123456_1" }

ohi = new JIONOLiect (res): 1

SharedPreferences login details = getBaseContext(].
getSharedPreferences ("login details", MODE PRIVATE) ;

Editor login details editor = login details.edit{):

login details editor.put3tring(ipplicationConstants. USER ID, 2
ohj.get3tring(ApplicationConstants. USERID TAG))

login details editor.put3tring(ipplicationConstants. 0 TRUSTED TOKEN,
obj.getitring (ApplicationConstants.WC TRUSTED TOKEN)) ;

login details editor.put3tring(ipplicationConstants.WC TOKEN,
obj.get3tring(ipplicationConstants.WC TOKEN)) ;

login details editor.putBooleanilipplicationConstants. IS5 SIGNED TN, true):;

login details editor.commit():

19 REST Services © 2012 1BM Corporation

The call-out on this slide shows the response to the login request. The login details for this
shopper, such as their user ID and authentication tokens, are saved in a shared login
details object so they are available for future requests.

The number one on the slide shows the JSON response object and the number two shows
the response data being populated in the login details object.

RESTServices.ppt Page 19 of 47

if (i=Secure) { 1
SharedPreferences login details = applicationContext.get3haredPreferences("login details", 0);
hoolean isSignedIn = login details.getBoolean(ApplicationConstants.IS SIGNED IN, false):;
String userId = null, wcToken = null, weTrustedToken = nuoll;
Log.d (METHODNAME, "isSignedIn: "™ 4+ isSignedIn):
if (isSignedIn) {
userld = login details.getdtring(ipplicationConstants. USER ID, null); 2
woToken = login details.getString(ipplicationConstants.WC TOKEN, null):
weTrustedToken = login details.getitring(ipplicationConstants.WC TRUSTED TOKEN, null);
Log.d (METHODNAME, "signedIn userId: " + userId + " wocToken: " + woToken):
} else {
userld = login details.get3tring(ipplicationConstants.GUEST USER ID, null); 3
wecToken = login details.get3tring(ipplicationConstants.GUEST WO TOKEN, null):
weTrustedToken = login details.getStringiipplicationConstants.GUEST WC TRUSTED TOKEN, null);
Log.d (METHODNAME, "cuest userId: " + userId + " woToken: " + woToken):

20 REST Services

© 2012 1BM Corporation

When the shopper takes an action in the store, such as adding payment information to
their order, the authentication tokens are retrieved from the shared login details object.

The number one on the slide shows that this code snippet is for dealing with secure
requests. The number two on the slide shows the user ID and authentication tokens being

retrieved for a logged in shopper. For guest shoppers, the guest tokens are retrieved by
the code next to the number three.

RESTServices.ppt Page 20 of 47

1

public 3tring invokeSecurePostRestiervice (String url, J3CHNObject o, String userId,
String woToken, String woTrustedToken) throws ClientProtocolException, IOEX
1
final String METHODMAME = CLASSNAME + ".invokeSecurePostRestiervice (String, J30k
Log.d (METHODMAME, "url: ™ + url + " c: " + ¢ + " userId: " + userld);
HoopClient httpelient = getSecureHtopClient ()
HttpFPost request = new HotpFPost{url):
request . addHeader (HTTP . CONTENT T¥PE, APPLICATION JE5OM):
regquest . addHeader (ApplicationConstants. USER ID, userld):
regquest . addHeader (ApplicationConstants. Wo TOKEN, wcToken): 2
regquest . addieader (ApplicationConstants. We TRUSTED TOKEN, woTrustedToken):
HoocpEntity entity=null;
Fcring respohse =null;

try

{
ZrringEntity =2 = new 3JtringEntity(c.todtring(),HTTP.UIF §);
entity = se: 3
request.setEntity (encitcy) ;

HttpResponse httpResponse = httpolient.execute (request); 4

21 REST Services © 2012 1BM Corporation

This method is used to build a secure POST request to add payment details to the order.
The user ID and authentication tokens obtained from the shared login details object are
added to the request header. The content of the POST request is a JSON object
representing the item being added.

The number one shows the information retrieved in the previous example being passed in
to this service invocation method. The number two shows where the authentication tokens
are added to the request header. Since this is a secure request, both tokens are needed.
The number three shows where the payment details are added for the POST request and
number four shows the REST service being invoked.

RESTServices.ppt Page 21 of 47

reguest.
reguest.
regquest.
regquest.
reguest.

try
{
if |

¥

public String invokeSecurePutBestService (String url, J30NCObject jsonCbhbject,
String userId, String wcToken, String woeTrustedToken)

HttpClient httpcoclient = getSecureHttpClient ()

HttpPost request = new HttpPostiurl):

addHeader (HTTP. CONTENT TYFPE, APPLICATION J50H) ;

addHeader (ApplicationConstants. USER ID, userld);

addHeader (ApplicationConstants. WC TOKEN, woToken):

addHeader (ApplicationConstants . WC TRUSTED TOKEN, wcTrustedToken):

addHeader (ApplicationConstants.X HTTP METHOD OVERRIDE, ApplicationConstants.IPUT);
HttpEntity enticy=null;
3tring response =null:

jzoncChiject !'= nuall){

StringEntity se = new 3tringEnticy(jsonObject.toltring(),HTTFP.UTF §):
entity = se;

request.setEntity(entitcy) ;

HttpResponse httpResponse = httpolient.execute (Fegquest))

REST Services © 2012 1BM Corporation

1

If the shopper later decides to update the payment details for their order, a secure PUT
request is created. The creation of the secure PUT request is very similar to the secure
POST request. The difference is the extra header attribute for X-HTTP-Method-Override.
This extra line is marked with the number one.

RESTServices.ppt

Page 22 of 47

= Client initiates request
= Resource handler processes request
= Data mapper converts BOD to JSON

= Entity provider returns result

23 REST Services © 2012 1BM Corporation

The second example follows the processing of a GET request from invocation to the
response being returned.

RESTServices.ppt Page 23 of 47

= GET shopping cart request
— https://mystore.com/wcs/resources/store/10101/cart/ @self

24 REST Services © 2012 1BM Corporation

This is the request from the client. It is a request to get the shopping cart for the current
shopper. Authentication tokens identifying the shopper are included in the request header.

RESTServices.ppt Page 24 of 47

= Class level annotation specifies base URI structure

@Path("store/{storeld}/cart"
EEncoded
public class CartHandler extends AbstractResourceHandler {

= Annotations on each method provide more granular definitions
EGET

EPath("@self")
public Response getCart|

= Client library used to call OAGIS service

{ Perform the service request.

OrderFacadeClient client = new OrderFacadeClient (bContext, ckbh):
DataCkject datalirea = ([DataCbject) client.getOrder (getVerk):

25 REST Services

@Produces({ "application/atom+xml", "application/json", "application/xml", "application/xhtml4xml™ })

© 2012 1BM Corporation

The URI in the request is matched to a corresponding resource handler in WebSphere
Commerce. Resource handlers identify which URL'’s they support using the @Path
annotation. Within the resource handler class, there are methods that process specific
types of requests for the resource such GET requests and POST requests. The second
code snippet you see here is the method header for the method that will process the GET
cart request. In order to get the shopper’s cart details, the resource handler method uses
the OrderFacadeClient to call the OAGIS service. The cart details are returned in the

response BOD.

RESTServices.ppt

Page 25 of 47

= Similar to mapping files used by Management Center

= Rest.wan\WebContent\WEB-INF\config\bodMapping\rest-<resource>-clientobjects.xml

cl-— ditem data in cart ——>
|< config: URLFarameterGroup name="carilTtem" noun="drder "> I 1

<_eontig:URLParamecer name="orderltem/orderTemTd" nounklement="/0OrderTtem/ OrderTtemldentifier/Uni quelDd"™ key="
< config:URLParsmeter name="orderItem/externalOrderTtemIl™ nounklement=",/0rderTtem/Orderitenddentifier/Externa
< config:URLParamster names"opderit em/productTd™ nounklement="/0rderIten/CatalogEntryIdentifier/Uniguell" key=
< config:URLParamster name=s"orderit em/partNumber™ nounklement="/0rderIten/CatalogEntryIdentifier/ExternalTdent
<_config:URLParameter name="orderltem/storeldentifier” nounklement="/0rderTtem/ CatalogEntryTdentifier/Ext ernal
<_config:URLParameter name="orderItem/ownerID" nounklement="/0rderTtom/CatalogEntryTdentifier/ExternalTdentifi
< _config:URLParameter nawe="orderItem/itemdttributes/attrName"” nounklewent="/0OrderTtam/TtemAt tributes/Frev" ke
<_config:URLParameter namwe="orderItem/itemdttributes/attrValue” nounklement="/0rderIten/TtemAt tributes/ Fralus”
<_config: URLParameter name="orderIt e/ orderTtemComponent ™ nounkElement="/0rderTtem/OrderItemtomponent ™ key="fal

<_config:URLParameter neamwe="orderTtem/guantity” nounElement= "/OrderItem/gudn tity/@value™ key="false" return="i¢
<_config: URLParameter InamE= "orderTt Em/UDM"IInDunE lement="/0rderTtem/ Quant i ty/@uom"l key="false" i

26 REST Services © 2012 1BM Corporation

Since the cart details are returned to the resource handler in BOD format but the REST
service is expected to return JSON format some data mapping is needed to convert one
form to the other. This mapping is very similar to the mapping in Management Center that
is used to convert BOD format to the internal Management Center object format. Each
resource type has it's own mapping file. The code snippet here shows a portion of the cart
resource mapping file. Each element in the BOD is mapped to an element in the JSON
object. The return attribute specifies whether to include the data in the REST service
response. These same mapping files are also used to convert JSON to BOD format for
POST and PUT requests.

The number one shows the logical name for this part of the mapping. The numbers two
and three show the REST representation and BOD representation of the data. The
number four shows the return attribute. Setting this attribute to true means the data should
be returned in the REST response. False means the data should not be included.

RESTServices.ppt Page 26 of 47

Default response provider
— com.ibm.commerce.foundation.rest.providers.JSONEntityProvider
— Extends AbstractEntityProvider

@Provider
EProduces (value = { "application/j=on™ })
public class J3CNEntityProvider extends AbstractEntityProvider {

= Use data mapper to build JSON object
— Method provided by AbstractEntityProvider

protected Map<String, Cbhject> formatResponseUsingBODToMapConfig(Map dataMap) throws Exception {

= Alternate option (for custom entity providers)
— Use JSP to build response

protected byte[] formatResponseUsingdsp (Map dataMap) throws WeblApplicationExceptiond{

27 REST Services © 2012 1BM Corporation

The response formatting is handled by the JSON entity provider which is a subclass of the
abstract entity provider. It uses a method provided by the abstract entity provider that
converts the SDO to a JSON object using the mapping files. The JSON object is then
returned as the service response. For custom entity providers, the abstract entity provider
also provides a JSP formatting option.

RESTServices.ppt Page 27 of 47

Example 2: JSON response received by client

i
"orderstatus": "P",
"or?erItem”: [
"productur1”: "http://localhost:8080/wes,/resources/store/10101/product,/Mw-0018-£203",
"orderItemstatus": "p"

“uomT: Uce2",)
"unitPrice"”: "14.99000",
"productId": "10822",

"itemattributes”: [

]

"E}uant'ity": "2.0",
"orderItemId": "65749"

"partNumber”: "Mw—OOlB,—E203",
"ad%ustment": [

REST Services

"amount": "-2.85000",
"description”: "save 10% on all orders”
I
i
“amount": "-1.50000",
"description”: "save 5% on all girls dresses and skirts”
¥
"tontractTd": "10008"
s
"totalsalesTax": "0.00000",
"paymentInstructionur1”: "https://localhost:8080/wcs,/resources,/store/10101/cart/@self/payment_instruction”,
"resourceType": "cart/Cart”,
"resourceld’: "http://localhost:8080/wcs/resources/store/10101/cart/@self"”,
"orderzd”: "18802"

© 2012 1BM Corporation

Here you see a portion of the shopping cart details in JSON format. This response is then

parsed by the client and the shopping cart is displayed.

RESTServices.ppt

Page 28 of 47

29

eeeeeee

Customization

© 2012 1BM Corporation

This section introduces the REST services customization scenarios.

RESTServices.ppt

Page 29 of 47

= Create a new REST service for a custom noun

= Update an existing REST service response
— Include more BOD data in the REST representation

— Remove specific BOD data from the REST representation
— Include user data

— Change the access profile

= Create a new entity provider for a custom response format

30 REST Services © 2012 1BM Corporation

There are three main areas of customization for the REST service framework. The first is
to create a new REST service for a new or customized noun. The second is to modify an
existing REST service response either by adding or removing data. The third is to create a
new entity provider to support a custom response format.

RESTServices.ppt Page 30 of 47

= WebSphere Commerce Developer prerequisites
— EMF Code Generation plug-in is installed
— JET RESTful Resource pattern plug-in is installed

‘ About Rational® Application Developer™ for WebSphere® Software Plug-ins

= Code generation is provided for creating and customizing REST services

Sig... | Provider | Plug-in Mame = | ersion | Plug-in Id |ﬂ

[EE| Eclipse.arg EMF Cheat Sheets 2.4.0.42009... org.edipse.emf.cheatsheets
Eclipse.arg EMF Code Generation 2. 5

cE| Eclipse.org EMF Code Generation UL 2.4.0.v2009,.. org.eclipse.emf.codegen. ui

[EE| Eclipse.arg EMF Comman 2.4.0.42009... org.edipse.emf.common

CEl Frlinca crn ERIE nraman L 7 4 N 20N e aclinea ardf corarnon i

t Sig... | Provider | Plug-in Mame | Yersian | Plug-inId = ;l
i 35] Service Module 7.0.0.2 car.ibm.commerce. toolkit.internal pattern.cam
[im JET RESTFul Resource pattern com.ibm. commerce. koolkit.internal pattern.rest
i [E33] 1BM ‘websSphere Commerce Devel... 7.0.0.7 cam.ibm. commerce. taolkit.internal plugin
i 53| IEM WebSphere Commerce Intern... 7.0.3.2 car.ibm.commerce. taolkit.internal projectimpor
i IEM Licensecheck Plug-in 3.1.0.v2009... comn.ibm.data.licensecheck
[IEM Data Tools Administrative Pre... 2.1.0,v2009... com.ibm.datatools, administrative, preferences
i IBM Mapfile Plug-in 1.0.2.42010... com.ibm.datatools. analysis,uid
R IEM Mapfile Plug-in 1.0.2.%2010... com.ibm.datatools.base compare.uid
31 REST Services

© 2012 1BM Corporation

Creating a new service is done using the JET code generation capability in WebSphere
Commerce Developer. You need to have the plug-ins shown here installed in your
development environment to generate code. You can find more information on installing

plug-ins in WebSphere Commerce Information Center.

RESTServices.ppt

Page 31 of 47

<rest

<noun

32

componentName="component_name" 1
internal="1ibm_internal”
packageNamePrefix="package_name_prefix"
xmlns :xsi="xml_name_space"

X5 :noNamespaceSchemalocation="no_name_space_schema_location">

name="noun_name" 2
pluralNounName="plural_noun_name" 3
resourceName="resource_name" 4
actionExpression="action_expression" S

actionExpressionsuffix="action_expression_suffix"

defaultAccessProfile="default_access_profile"
defaultExpression="default_expression">

<findBy
expression="get_xpath_expression"
name="findby_name" 6
accessProfile="get_access_profile"/>

<delete
key="key_to_delete"
method="delete_method" />

<Create
for="create_for" 7
method="create_method" />

<update 8
for="update_for"
method="update_method"/>

</noun=
</rest>

REST Services

© 2012 1BM Corporation

The first step in code generation is creating a pattern file as the input to the code
generator. This slide shows the template for the XML pattern file.

The number one is the component name of the web service that you want to create a
REST service for. Numbers two and three are the name of the noun within the component
that is modified through the REST service. In Feature Pack 4, the convention is to use the
singular version of the noun name so both of these attributes can be set to the same
value. The number four is the name of the REST resource you want to create. Number
five is the action expression for the noun or noun part that corresponds to the resource.
The numbers six, seven and eight are the client library methods to call for the different
resource actions. Six is the findBy method name used for GET requests. Seven is the
creation method used for POST requests and eight is the update method used for PUT

requests.

RESTServices.ppt

Page 32 of 47

Generate a new service — pattern input file example

<?xml wersion="1.0" encoding="UTrF-g"2 >
<rest componentName="Member"linternal="false" packageNamePrefix="com. ibm. commarca™
xmlns:xsi="kttp: Awww. w3, or g/ 2001/ XMLE chema-instance™
xz1l:nolammespaceichemalocat ion="sckema. xsd ">
<noun actionExpression="dddressBook/Contact™ 5
actionExpressioniuffix="" defaultAccessPerile="IEmLStorq_Details"
defaultExpression="{self=truec} Person" name="lersox"splurallNouniame="Ferson™
resourceName="lerson'> 4
<findBy expression=", Perseonflersonldentificr| (TrigusID={0})]]"
name="UnigquelD" accessProfile="IOM Store Details™ /> 6
<findbBy expression="sPerseonlCredentizl [LogonIi={0}1] " nawme="LogonID"
accessProfile="IBM Store Details™ />
<delete key="Contextdttribute” method="deleteContextAttributeForPerson™ />
<create for="Person" method="registerPerson”™ /= 7
<update for="Person"™ method="updatelarson™ /> 8
</ noun=
<frestx

33 REST Services © 2012 1BM Corporation

Here is an example of a complete pattern file for the Person noun. The numbers highlight
the sections in the pattern described on the previous slide.

RESTServices.ppt Page 33 of 47

@ Run Configurations

Create, manage, and run configurations

N

Generate a new service — generate code from pattern file

[evpe Filter test

+B8 apache Tomcat

Eclipse Application

B4 Edlipse Data Tools

- Genetic Server

Generic Server(External Launch)

Configuration
window

e IEES \}f Open Run Nerie: | PiyRestservics,sml

% Main [Common |

Iran Input

| WebSphersCommerceServerExtensionsLagic/MyRestService xml

HTTP Preview
J2EE Preview

| Java Applet

| Java Application

J4 JUnit Plug-in Test
05Gi Framework
Test

[¥SL Transformation

Filter matched 19 of 19 items

Select pattern

file

| WebSphere Application Server Administrative Script
WebiSphere Application Server v8.0 Application Client
%] websphere Application Server v7.0 Application Client

~Tran

m: |com.ibm.commerce. taolkt.internal. pattern.rest [
Wame: [€T RESTRUl Resource pattern

Description:

~Display Messages

Severity (st or above): [information

Apply. Reyert

)

34 REST Services

© 2012 1BM Corporation

Once your pattern file is ready, launch the Run Configuration window in WebSphere
Commerce Developer and select your pattern file. Run the code generation. The details of
the code generation process can be found in the WebSphere Commerce Information

Center.

RESTServices.ppt

Page 34 of 47

Location of generated files

E|TD‘J webSphereCommerceserverExtensionsLogic

B sre
E|EE\l com.ibm.commerce. copyright
|i| IBMCopyright. java
=83 com.ibm.commerce, rest. extension. bod, helpers
[J] PersonHelper.java 1
=8} com.ibm.commerce. rest, extension, member handler
E||i| PersonHandler.java
: #-@ PersonHander 2
B[META-INF
[+-E= EAR Libraries
'"Em WebSphere Application Server +7.0 ['"WebSphere Application Server +7.0]
'"Em JRE System Libraty [WebSphere Application Server w70 JRE]
E|lc7 WWebContent
=)= WEB-INF

B config

E|L/;7 bodMapping-ext

o || dump.xml

o |M] MyRestService, xml

35 REST Services

erge

“|¥| rest-person-clientobjects, xml 3 =
: - |X wc-service-client—librarv.xm% F-= b
o |=| resources-ext.properties 5

Rest project files

% Java Resources: src
} Security Editar

& web Site Navigation
== WebContent

+-{= templates
B2 WEB-INF

== config

[#-[= bodMapping
> = bodMapping-ext
/ [#-[= com.ibm. commetce, catalog
[#-[= com.ibm.commerce rest
2| providers.properties
o = providers-ext.propertiss
- =] resources.properties
//VH resources-ext, properties
----- = rest-config. properties

¥ ibrn-web-bnd.xml
- ibrm-web-gxt.xml
gl struts-config.xml
@] struks-estension.
(@ web.xml

© 2012 1BM Corporation

The left side of this screen shows the files generated using the sample Person pattern file.

The numbers one and two indicate the new resource handler and a helper file for calling
the corresponding OAGIS service. Numbers three, four and five indicate configuration files
including the mapping file and the resource handler definition file. These files need to be

merged with the existing files in the Rest WAR as shown on the slide.

RESTServices.ppt

Page 35 of 47

El\JEJ Rest

Rest

+- 22 Java Resources: stc
‘2 Security Editor

Prepare the file
— Create an empty data mapping file in

Rest.war\WebContent\WEB-INF\config\bodMapping-ext [web Site Navigation
« rest-resourceName-clientobjects.xml T
» Do not directly update the files in the bodMapping (= jop
directory # (> META-INFE
[#-(= templates
— Add the basic XML elements required for the mapping file Ez wEbr
E|-t_7 config
= Add new data -- Eo:Main
. .
— Add one or more property mappings to include == mmﬂbmmm:me.catalog
— Set the attribute return value to “true” > comfom. commerce. rest
_ Example providers,properties

providers-ext. properties
resources, propetties

<_config:URLParameter name=“HouseHoldSize"
nounElement=""/PersonalProfile/HouseHoldSize (e resturces-ext properties
|=| rest-config, properties

" key=""false" return="true" /> E-E b

& tbrn-web-bnd, xml
- % ibr-web-ext sl
@] struts-config,xml
- struts-extension sl
- web.xml

36 REST Services © 2012 1BM Corporation

The second main area of customization is modifying the response of an existing REST
service. Whether you are adding or removing data, the first step is to create an extension
mapping file. In this file you only need the elements you want to change. To add new data,
you add one or more property mappings and set the return attribute for each to true.

RESTServices.ppt Page 36 of 47

= Prepare the file
— Same process described on previous slide

= Remove existing data
— Copy the property mappings you want to remove from the default
configuration file
— Set the attribute return value to “false”
— Example
<_config:URLParameter name="‘companyName""

nounElement=""/PersonalProfile/CompanyName""
key="false" return=“false" />

37 REST Services © 2012 1BM Corporation

To remove data from the REST service response, you follow the same steps as the
previous slide including adding each property to be removed into the extension mapping

file. You then set the return attribute to false and each element specified are ignored when
building the JSON response.

RESTServices.ppt Page 37 of 47

= URLParameter XML element must
— Have a name attribute with a predetermined “x” prefix
— Have an type attribute of “UserData"

= Example: Map all user data under AddressBook/Contact/Address/
<_config:URLParameter name="contact/xaddr_"

nounElement=""/AddressBook/Contact/Address/UserData/UserDataField"
key="false" return="true" type="UserData" />

— If name/value pairs defined in UserData are
startDate = 11112000
permanent = true
— REST services returns
{
"xaddr_startDate"™ : “11112000",
"xaddr_permanent" : “true"

}

38 REST Services © 2012 1BM Corporation

Another way to update a REST service response is to include user data. The existing
WebSphere Commerce REST services return the user data fields for their corresponding
nouns. If you generate a new REST service, you need to populate the mapping file
including any user data contained in your custom noun. A code snippet for adding user
data to your mapping file is shown on the slide. Notice that the type attribute indicates this
is a user data field. The remaining code examples show sample user data name value
pairs and the resulting JSON format for the data.

RESTServices.ppt Page 38 of 47

39 REST Services © 2012 1BM Corporation

If you have created a custom access profile or search profile to return extra data, you
need to configure the REST service to use the new profiles. The first step is to create an
extension resource configuration file to define the new access profile mappings. You
should not change the default file directly. Once the extension file has been created, copy
over the GetUri elements that have changes in their access profiles. If you are adding new
mappings, you can use those in the default file as a template. Set the accessProfile
attribute to the name of your new access profile. If there is an associated search profile
that has been customized, specify the new search profile name as well. Once this change
is complete, your REST service will use the updated access profile mapping and the
custom data is returned in the BOD response. If necessary, add additional data to the
BOD mapping file as described in the previous slides.

RESTServices.ppt Page 39 of 47

= By default WebSphere Commerce REST framework supports JSON and XML response
formats

= New formats can be supported by creating a custom entity provider
— Example: XHTML entity provider

= Create a new entity provider class
— Register entity provider in Rest/WebContent/\WEB-INF/config/providers-ext.properties
— Register new response format in Rest/WebContent/WEB-
INF/config/com.ibm.commerce.rest-ext/wc-rest-responseformat.xml

= Create a new JSP to map data objects to the custom response format

= Customization example provided in Information Center

40 REST Services © 2012 1BM Corporation

The final customization scenario is creating a new entity provider. The WebSphere
Commerce REST framework supports JISON and XML response formats. If your client
requires a different format, you need to create a new entity provider. There is no code
generation for creating an entity provider. You extend the AbstractEntityProvider class and
provide your custom mapping in one or more JSP files. To make the new entity provider
available, the new provider class and the new response format need to be registered in
the files shown on the slide. Detailed steps and sample code for this customization are
provided in the Information Center.

RESTServices.ppt Page 40 of 47

41

eeeeeee

Problem determination

© 2012 1BM Corporation

This section provides some problem determination tips.

RESTServices.ppt

Page 41 of 47

com.ibm.commerce.rest.*
— Resource handlers
— BOD helpers

com.ibm.commerce.foundation.rest.*
— Entity providers
— Caching
— Low level BOD to JSON mapping
— JSON response string
» com.ibm.commerce.foundation.rest.bodmapping.BODMappingUtility
createMapFromBOD RETURN

= org.apache.wink.*
— JAX-RS framework

42 REST Services © 2012 1BM Corporation

There are several different trace strings that you can use to help debug problems with
REST services. The different trace options and the part of the framework they support are
shown on the slide.

RESTServices.ppt Page 42 of 47

Testing REST services

%) chrome:/ [poster - Poster - Mozilla Firefox

=1o| x| x|
“Request POST on hitps://myhost. com/wcs/resources/store/10001/loginidentity
q Stalus: 200 OK
URL: I https-//myhost com/wcs/resources/store/10001/loginidentity 1
"WCToken":
User Auth: | |.| "507%2cg6c608RNT1b1Z6XNTCmMS 17552 fwEWCIUAXWOI PEWT PSS FCHQv1nd
N 6PKidEC58ndN31L09uDs2 ERT4$2bH
) [$0d$0a0pigiINSzsZkPx322£G1CAQVL zWkx KW Imu2T$2 {R4URENDUITS2£4h
Timeout (s): | 30 | JEXITTwEEXZPO0E3A",
"WCTrustedToken®:
Actions

"507%2c3mxjn5UlbnNo3H1sJ1LESXu3Qykss3d”,
_ "personalizationID"™: "1319834244560-4",
GET | POST | PUT H DELETE vl) ‘ nserzar: nsg7v

Content to Send | Headersl Paramelersl

File: | Browse. .

Content Type: |app\icat\onf]son

Conlent Oplions Base64 Encode | Body from Parameters | feaders:
Content-Type | applicationfjson
{
"logonid”; "tester1”, vary | Accept
"logonPassword"™ "testeri1” Content-Language | en-Us
Content-Length | 302
Date

I Wed, 16 Nov 2011 23:25:28 GMT

Server | WebSphere Application Server/7.0

= “Poster” add-on for Firefox _ chbse |

= |ssue services requests and examine the response

43 REST Services

© 2012 1BM Corporation

The Poster add-on for Firefox is helpful for testing REST services. You can manually enter
a service request including JSON content and then invoke the service. The JSON
response is returned along with the response headers.

RESTServices.ppt Page 43 of 47

= REST services top level
= JET RESTful Resource pattern input file
= Customizing entity providers for REST services

= REST API reference

44 REST Services © 2012 1BM Corporation

This slide contains some references for further reading on this topic.

RESTServices.ppt Page 44 of 47

= Architecture overview
= Examples
= Customization

= Problem determination

45 REST Services © 2012 1BM Corporation

This presentation began with an overview of the REST services solution architecture.
Following the architecture overview was a series of examples that demonstrated the
concepts covered in the overview. This presentation concluded with some example
customization scenarios and problem determination tips.

RESTServices.ppt Page 45 of 47

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

= Did you find this module useful?
= Did it help you solve a problem or answer a question?

= Do you have suggestions for improvements?

Click to send email feedback:

This module is also available in PDF format at:

46 REST Services © 2012 1BM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

RESTServices.ppt Page 46 of 47

Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM'S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

47 © 2012 1BM Corporation

RESTServices.ppt Page 47 of 47

