
WorklightIntegration.ppt Page 1 of 28

This presentation provides an overview of the new hybrid application and Worklight
integration in Version 7 Feature Pack 6. You should have a general knowledge of the
existing WebSphere® Commerce mobile commerce solution before viewing this
presentation.

WorklightIntegration.ppt Page 2 of 28

This presentation begins with an overview of the hybrid application and the Worklight
development platform. Next a summary of the application architecture is provided. The
presentation concludes with some tips for adopting the new hybrid application and
troubleshooting.

WorklightIntegration.ppt Page 3 of 28

This section provides an overview of the Worklight hybrid application.

WorklightIntegration.ppt Page 4 of 28

This chart summarizes the mobile solution in Feature Pack 6. The top of the diagram
shows the various ways smart phones and tablets can access a WebSphere Commerce
store. These include browser-based stores and device-specific applications. Collectively,
the mobile web stores and applications are referred to as the mobile reference
applications. Similar to the traditional starter stores, the device-specific applications make
use of services to access the WebSphere Commerce application.

The left side of the diagram lists WebSphere Commerce capabilities that can be added to
the mobile reference applications such as analytics and distributed order management
(DOM) integration. For example, cross channel inventory availability and orders submitted
through the mobile channel can be processed by your back-end DOM system. The right
side of the diagram lists the technologies used in building the mobile reference
applications. This presentation will focus on the Worklight Studio IDE. Finally, the bottom
of the diagram highlights other integrations that are possible with this solution such as
user notification capabilities, social mobile commerce, mobile payment, location services
and other vendor mobility services.

WorklightIntegration.ppt Page 5 of 28

The new hybrid application for the Aurora store is based on the IBM Worklight platform.
This platform is summarized on the next slide. The application is delivered as a sample
Worklight project with device-specific code for Android smartphones. It is possible to add
device-specific code for other platforms into the sample project if you want to deploy
hybrid applications for other platforms. The server-side content for the hybrid store is
provided by the Aurora mobile web store. The hybrid application can take advantage of
generated store preview links. Preview link generation is covered in the store preview
topic in the business user interface section. As in Feature Pack 4, the hybrid application
makes use of some native capabilities. These include the application shell, barcode
scanner, voice search, address book and maps for displaying store locations.

WorklightIntegration.ppt Page 6 of 28

The Aurora hybrid sample application is provided as an IBM Worklight project. IBM
Worklight provides an open, comprehensive and advanced mobile application platform for
smartphones and tablets. Using standards-based technologies and tools, IBM Worklight
provides a single integrated platform that includes a comprehensive development
environment, mobile-optimized runtime middleware, an enterprise application store, and
an integrated management and analytics console.

Worklight Studio is a stand-alone Eclipse-based IDE for mobile application development.
Worklight Server provides application management capabilities for deployed applications.
The Worklight Runtime Components include libraries that assist in building the
applications. Worklight Console provides a web-based interface to the management
capabilities supported by Worklight Server. The supported versions of Worklight for this
integration are shown on the slide. Worklight is a separately licensed product. Deploying a
hybrid application based on Worklight requires a license. You do not require a license to
test the sample hybrid application provided with Feature Pack 6.

WorklightIntegration.ppt Page 7 of 28

The Worklight Server provides application management capabilities that were not
previously available in the mobile solution. While applications are under development, the
IBM Application Center provides a way to easily manage and deploy them to test devices.
The Application Center mobile client application needs to be installed on the test device.
This application is installed from the Application Center website. This application then
provides a list of all store applications under development including version numbers. The
store applications can be installed and uninstalled through the Application Center, a task
that normally requires a vendor marketplace. Since version numbers are tracked, it is also
possible to see when a new version of the application is available to test and to switch
between versions.

WorklightIntegration.ppt Page 8 of 28

Once an application is deployed to the vendor marketplace, the Worklight Server allows
you to retain some control over which version of the application your customers are
running. Direct update allows new web assets to be pushed out to customers with a
previously installed version and prompts them to install the new web assets. This update
method does not work for native code updates. In that case, the application must be
reinstalled from the marketplace. In the event that a new version of the native code is
released, Worklight Server provides the option to send a message to all users of the
current version informing them of the update. It is also possible to disable specific versions
of the application to force customers to upgrade to a new version. Version control tasks
are accomplished using the Worklight Console which provides a GUI frontend for
Worklight Server.

WorklightIntegration.ppt Page 9 of 28

This is a screen capture of Worklight Console which provides access to the Worklight
Server capabilities. Using the version management tools, you can send notifications to
customers or disable a specific version of the application. A sample notification is shown
on the right of the screen.

Worklight Server includes some capabilities not demonstrated in this integration. These
are: push notifications, adapters, and application authentication.

WorklightIntegration.ppt Page 10 of 28

This section covers the architecture highlights of the new hybrid application.

WorklightIntegration.ppt Page 11 of 28

On this slide, you see a high level architecture of the Worklight integration with
WebSphere Commerce. When the hybrid application is launched, a local HTML page
initializes the Worklight runtime and connects to the Worklight Server. The connection
allows the application to be managed through Worklight Console. If an administrator has
disabled this version of the application, the customer is prompted to download the latest
copy. If updated client-side web assets are available, they can be downloaded directly
from the Worklight Server. Although not used in the Feature Pack 6 sample application,
push notifications can also be sent from Worklight Server to connected devices.

The main content for the application is generated server-side by WebSphere Commerce
and displayed in an embedded browser in the hybrid application. Some client-side
JavaScript libraries such as Cordova and Worklight JS are placed on the WebSphere
Commerce server as part of the mobile web store.

WorklightIntegration.ppt Page 12 of 28

This slide illustrates where different parts of the hybrid application are created. Updates to
the native device code still require the customer to download a new version of the
application. The area highlighted in blue is remote content loaded from the mobile web
store in WebSphere Commerce. The hybrid application uses a custom user-agent to
identify itself to WebSphere Commerce. This allows the server-side code to return
Worklight-specific web assets. The area highlighted in red is a native Android options
menu generated by Worklight using the Worklight JavaScript API . Updates to native
elements such as this are made in server-side JavaScript, and do not require the
customer to download a new version of the application. The area highlighted in green is a
native Android search dialog, an example of integrating native and web pages using the
Worklight NativePage API for the remote content. The search dialog is a custom native
page and updates to the native elements still require the customer download a new
version of the application.

WorklightIntegration.ppt Page 13 of 28

To support the hybrid application, the mobile web store code includes some hooks to
native device capabilities. In Feature Pack 4, these hooks were implemented using
custom-built “JavaScript bridge” code. In the updated Feature Pack 6 store, the custom
code is replaced with Worklight runtime API calls. The Worklight runtime API is based on
Apache Cordova. The native features used by the hybrid application have not changed
from Feature Pack 4. They are address book for contacts, Google maps for store location,
barcode scanner (providing a vendor application is installed) and voice search. The menu
options populated in the device menu bar are also set using the APIs. To make use of
these APIs, store developers need to import the Worklight runtime libraries into
WebSphere Commerce Developer.

WorklightIntegration.ppt Page 14 of 28

Worklight Studio is a stand-alone Eclipse-based IDE for mobile application development.
The Worklight development tools are not included in WebSphere Commerce Developer.
The Worklight Studio IDE comes with several popular JavaScript frameworks such as
Dojo, jQuery Mobile, and Sencha Touch already installed. SDKs for specific mobile
platforms, such as Android, need to be added on. In Feature Pack 6, Worklight Studio is
used to develop the client-side portion of the Aurora smartphone hybrid application. The
files created and updated in Worklight Studio include the client-side HTML, CSS, and
JavaScript code for the splash screen, tab bar and developer settings page. Also included
is the Android native code for the application shell, initialization and native feature
interface.

On the right side of the screen, you see the structure of the sample Worklight project. The
WCHybrid folder contains all the common and platform specific code for the application.
From the Worklight project, you can generate platform-specific applications such as the
Android one shown here. Once the Android project is generated, the application can be
signed, exported and published to a application marketplace following the standard
process.

WorklightIntegration.ppt Page 15 of 28

This slide shows the location of the server-side code for the hybrid application. Most of the
store JSP files are shared with the smartphone web store. A few files are specific to the
hybrid application and these are contained in the WorklightHybrid subdirectory. The
application-specific files include CSS, JavaScript, image and JSP files specific to the
hybrid application pages. Some are platform-specific and others are common to any
device running the hybrid application. The hybrid-specific JavaScript files include the code
that makes use of the Worklight runtime API to access the address book, barcode
scanner, native map and geolocation integration. The include folder contains a set of
Worklight hybrid-specific JSP files such as CachedHeaderDisplay.jsp,
CachedFooterDisplay.jsp to set up the hybrid application client-side environment.

WorklightIntegration.ppt Page 16 of 28

This section summarizes the steps needed to adopt the new hybrid application into an
existing environment.

WorklightIntegration.ppt Page 17 of 28

To make use of the hybrid application, you first need to publish the Aurora mobile web
store. To deploy a hybrid application based on the sample, you need to purchase a license
for one of the supported versions of IBM Worklight. It is not bundled with WebSphere
Commerce. When installing Feature Pack 6, there are no steps specific to the hybrid
application. Setting up Worklight is a separate installation process. There is no migration
from the previous version of the hybrid application to the new version. The older version
continues to be supported but has not been updated for the Aurora store. Configuration for
the hybrid application requires a moderate amount of effort since you will need to
configure Worklight Studio and import the sample code.

WorklightIntegration.ppt Page 18 of 28

The first link provided on this slide is to publish the Aurora mobile web store for
smartphones. This store is contained in AuroraMobile.sar.

The second link provides an end-to-end guide to installing and configuring Worklight and
importing the sample code. There are also some steps needed to configure WebSphere
Commerce.

WorklightIntegration.ppt Page 19 of 28

Once you have the sample Worklight project loaded, you will likely need to customize the
sample code to suit your needs. This slide provides links to help with two common
customizations. The first link is for acquiring an Google map key so your application can
display maps for store locations. The second link is for getting started with Worklight
application development. You will need to become familiar with the project structure and
assets to adjust native shell settings such as the store name and color scheme.

WorklightIntegration.ppt Page 20 of 28

This slide summarizes the operating systems supported by the various mobile store
options. Applications released in previous feature packs and not updated in Feature Pack
6 will continue to be supported as-is.

WorklightIntegration.ppt Page 21 of 28

There are two options for adding logging to the client-side code in the hybrid application.
Worklight has a JavaScript API for logging. The logger outputs the trace to the native
platform console for the device being tested. For example LogCat for Android devices.
The logger is controlled by the enableLogger parameter in initOptions.js (client-side) and
initOptionsApp.js (server-side). In the sample application code, the logger is turned on by
default. For debugging problems in native code, there are platform-specific logging
classes you can use such as Log for Android and NSLog for iOS. Server-side logging is
also available using standard WebSphere Commerce trace statements. This solution does
not add any new server-side trace methods.

WorklightIntegration.ppt Page 22 of 28

This section summarizes some troubleshooting tips for the hybrid application.

WorklightIntegration.ppt Page 23 of 28

When debugging problems in the mobile web stores it helps to verify whether the function
is working in the desktop store. If not, the component that has the problem is a good place
to start. If the desktop store is working correctly and it’s only the mobile store that has a
problem, start your debugging from the affected store page. If you have problems with the
UI not displaying or working correctly there are two likely causes. You should check that
you are viewing the store in a browser with WebKit support and that Dojo is being loaded
correctly. To debug a mobile web store from a desktop machine, use either Safari or
Chrome. Both browsers have WebKit support. You can make use of user agent switching
in your desktop browser to simulate different mobile devices.

WorklightIntegration.ppt Page 24 of 28

Since hybrid applications get the majority of their screen content from the same JSP files
as the mobile web application, you should start by checking whether the problem also
exists in the mobile web store. If the problem is unique to the hybrid application, the next
step is to verify the application is configured correctly. The host name, store ID or catalog
ID for the application might be incorrect. If the application is configured correctly, the
problem might be in one of code paths that invokes hybrid-specific code. If the problem is
in the Worklight code, you can use the WL.Logger API to output trace. LogCat can be
used to view trace statements generated by either client-side or server-side Worklight
code. You can debug problems in the Android code by running the application in the
emulator and viewing the log output in the LogCat view. You can also set breakpoints in
the Java code and use the Eclipse Java debugger.

WorklightIntegration.ppt Page 25 of 28

This presentation began with an overview of the hybrid application and the Worklight
development platform. Next a summary of the application architecture was provided. The
presentation concluded with some tips for adopting the new hybrid application and
troubleshooting.

WorklightIntegration.ppt Page 26 of 28

This slide contains some useful references for working with the new hybrid application in
Worklight.

WorklightIntegration.ppt Page 27 of 28

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WorklightIntegration.ppt Page 28 of 28

