
Exception_Handling_Propagation.ppt Page 1 of 24

®

IBM Software Group

© 2006 IBM Corporation

Updated October 3, 2006

WebSphere® Message Broker V6

Exception Handling and Propagation

This presentation discusses the enhancements in ESQL exception handling and
propagation in WebSphere Message Broker Version 6.

Exception_Handling_Propagation.ppt Page 2 of 24

IBM Software Group

2

Exception Handling and Propagation © 2006 IBM Corporation

Agenda

� Exception Handling Enhancements

�EXIT HANDLER

�CONTINUE HANDLER

�LOG STATEMENT

� Propagation

The agenda includes a discussion of Exception Handling Enhancements, including the
new EXIT HANDLER, CONTINUE HANDLER, and LOG statement, and the
enhancements made to propagation.

Exception_Handling_Propagation.ppt Page 3 of 24

IBM Software Group

3

Exception Handling and Propagation © 2006 IBM Corporation

Exception Handling EnhancementsException Handling Enhancements

Exception Handling Enhancements

Exception_Handling_Propagation.ppt Page 4 of 24

IBM Software Group

4

Exception Handling and Propagation © 2006 IBM Corporation

Handlers

�A handler is a group of statements that are
executed when a specific error or exceptional
condition is encountered in a programming scope

�Handlers are identified by the DECLARE …
HANDLER statement

A handler is a group of statements that are invoked when a particular exception occurs
within a programming scope. Handlers are identified by the DECLARE … HANDLER
keywords.

Exception_Handling_Propagation.ppt Page 5 of 24

IBM Software Group

5

Exception Handling and Propagation © 2006 IBM Corporation

EQSL handlers in previous releases

�Previously releases generally required a separate
node for handling ESQL exceptions

�Much contextual data was lost because the handler
was not executing within the same node

�V6 provides a solution for this problem

In previous releases of WebSphere Message Broker, a separate node was generally
required for ESQL exception handling. A broker ESQL exception could not easily be
handled within the node where the failure occurred. Processing in a separate node
resulted in the loss of much contextual information related to the failure.

V6 provides a solution for this problem, eliminating the need for a separate node for
handling ESQL exceptions.

Exception_Handling_Propagation.ppt Page 6 of 24

IBM Software Group

6

Exception Handling and Propagation © 2006 IBM Corporation

ESQL exception handling

�Now possible to easily catch broker ESQL
exceptions within the node where exception occurs

�Allows you access to localized data when processing
ESQL exceptions

�TryCatch node and Input node still available to catch

terminals for flow level exception handling

�EXIT and CONTINUE handlers

�EXIT - Stop processing in this node after handling error

�CONTINUE – Continue processing with next statement
after handling error

In V6, using the new ESQL handlers, it is now possible to easily catch broker ESQL
exceptions within the node where the exception occurs. This localized exception handling
allows you to process the exception with access to specific contextual information within
that node. You can still use the TryCatch node and the Input node catch terminals for flow
level exception handling.

Two types of handlers are available:

- a DECLARE EXIT HANDLER, which exits processing in the node when the handler
completes, and

- A DECLARE CONTINUE HANDLER, which, when the handler completes, allows
processing in the node to continue with the next statement following the failure

Exception_Handling_Propagation.ppt Page 7 of 24

IBM Software Group

7

Exception Handling and Propagation © 2006 IBM Corporation

Processing the exception

�Processing proceeds as follows

�Exception is thrown

�Handlers searched from innermost to outermost until
match

�Set SQLSTATE, SQLCODE, SQLERRORTEXT,
SQLNATIVEERROR

�Handler is executed (may THROW or RESIGNAL)

�Normal statement of execution is according to handler

type

� EXIT: exit processing until higher level TryCatch or Input node is reached

� CONTINUE: after statement which caused exception

Processing the exception proceeds in this manner:

-The exception is thrown

-The handlers are searched from the innermost to the outermost until a match on the
conditions occurs

-The SQLSTATE, SQLCODE, SQLERRORTEXT and SQLNATIVEERROR variables are
set

-The handler is invoked

-Assuming the handler itself does not issue a throw an exception or issue a resignal, the
processing proceeds depending on the type of handler. After an EXIT HANDLER
completes, the processing exits until an enclosing TryCatch is invoked or until an Input

node is reached. After a CONTINUE HANDLER completes, processing resumes with the
next statement following the failing statement.

Exception_Handling_Propagation.ppt Page 8 of 24

IBM Software Group

8

Exception Handling and Propagation © 2006 IBM Corporation

SQLSTATE

A comprehensive set of SQLSTATEs are provided, enabling you to determine the cause
of the exception within your handler code. The slide shows you a summary of these state
values. Notice that certain character values within the SQLSTATEs denote a general
classification of exception. The WebSphere Message Broker Information Center contains
a complete list of the possible SQLSTATE values that WebSphere Message Broker can
set.

Exception_Handling_Propagation.ppt Page 9 of 24

IBM Software Group

9

Exception Handling and Propagation © 2006 IBM Corporation

ESQL handlers syntax and examples

Here is a summary of the ESQL Handler Syntax. Notice immediately after the DECLARE
the two types of HANDLERs – CONTINUE and EXIT.

Also note the RESIGNAL statement. RESIGNAL re-throws the current exception. You can
use it only in error handlers. Typically, RESIGNAL is used when an error handler catches
an exception that it can't handle. The handler uses RESIGNAL to re-throw the original
exception so that a handler in higher-level scope has the opportunity to handle it.

Below the syntax summary are two examples that show the flow difference between an
EXIT HANDLER and a CONTINUE HANDLER. In the first example, when the EXIT
HANDLER completes, processing will exit to a higher level programming scope; thus the

last statement in the first example will NOT be executed. In the second example, when the

CONTINUE HANDLER completes, processing will return to the statement immediately
after the THROW statement.

Exception_Handling_Propagation.ppt Page 10 of 24

IBM Software Group

10

Exception Handling and Propagation © 2006 IBM Corporation

Logging

�Allows ESQL authors to report message
processing information

�Progress

�Unexpected conditions

�Variety of destinations supported

�Windows® event log, UNIX® system logs, z/OS® job logs

�User trace

�Useful for exception handler reporting

The LOG statement allows ESQL authors to report message processing information. You
might want to report the progress of a certain process or report unexpected conditions.
Logging supports a variety of destinations, including the Windows event log, UNIX system
logs, and z/OS job logs. You can also record information in a user trace record as well.
The LOG statement can be very useful in error handlers as well, to report on the
invocation and progress of particular types of errors or exceptions.

Exception_Handling_Propagation.ppt Page 11 of 24

IBM Software Group

11

Exception Handling and Propagation © 2006 IBM Corporation

LOG syntax

>--LOG-+-EVENT--------+-+------------------+-+---------+-+-------------------------+-

>>

+-USER-TRACE---+ +------+-EXCEPTION-+ +-Options-+ +-VALUES-(-Expression-+-)-+

+-FULL-+

Where:

Options =

>-+----------------------+--+---------------------+--+--------------------+->

+-SEVERITY-Expressions-+ +-CATALOG-Expressions-+ +-MESSAGE-Expression-+

Here is a summary of LOG syntax.

Below the syntax summary are two simple examples. The first example show logging an
exception to a user trace entry. The second example shows logging the full exception
information as an event.

Exception_Handling_Propagation.ppt Page 12 of 24

IBM Software Group

12

Exception Handling and Propagation © 2006 IBM Corporation

PropagationPropagation

This section discusses the PROPAGATION statement.

Exception_Handling_Propagation.ppt Page 13 of 24

IBM Software Group

13

Exception Handling and Propagation © 2006 IBM Corporation

Handling errors in other nodes

�Exceptions occurring in another node as a result of
a PROPAGATE statement might be caught by
current exception handler

�Current exception handler node might not be
correct node to handle exception

�Changes to compute node, database node, and
PROPAGATE statement help you route messages
to correct node for handling the exception

Exceptions occurring in other nodes downstream of a PROPAGATE statement might be
caught by exception handlers. Handling such errors intelligently, however, poses the
special problem that, as another node was involved in the original exception or error,
another node, and not necessarily the originator of the exception, is very likely to be
involved in handling it.

Changes have been made in V6 to the Compute node, the Database node and to the
PROPAGATE statement to help you route messages to the appropriate node for

exception handling.

Exception_Handling_Propagation.ppt Page 14 of 24

IBM Software Group

14

Exception Handling and Propagation © 2006 IBM Corporation

New terminals in compute, database nodes

�For V6, “out1”, “out2”, “out3”, and “out4” terminals
added to Database node and Compute node

� PROPAGATE statement enhanced to allow it to
take advantage of these new terminals

To help in these situations the Database and Compute nodes have four new terminals
called out1, out2, out3, and out4. Error handlers can now propagate to these terminals
for any required error handling situations. In addition, the syntax of the PROPAGATE
statement has been extended to include target expression, message source and control
clauses to give more control over these extra terminals.

Exception_Handling_Propagation.ppt Page 15 of 24

IBM Software Group

15

Exception Handling and Propagation © 2006 IBM Corporation

PROPAGATE

�The syntax of the PROPAGATE statement has
been extended to include:

�Target expression

�Message source

�Control clauses

The syntax of the PROPAGATE statement has been extended to include target
expression, message source and control clauses to give more control over these extra
terminals.

Exception_Handling_Propagation.ppt Page 16 of 24

IBM Software Group

16

Exception Handling and Propagation © 2006 IBM Corporation

PROPAGATE syntax

Here is the syntax of the Propagate statement. The next slides will point out the new
features.

Exception_Handling_Propagation.ppt Page 17 of 24

IBM Software Group

17

Exception Handling and Propagation © 2006 IBM Corporation

PROPAGATE syntax

TO TERMINAL – allows you to identify desired output terminal as a target

TO LABEL – allows you to identify a Label node as a target

The TO TERMINAL allows you to identify the desired output terminal to which you wish to
propagate.

The TO LABEL allows you to identify a Label node as a target of the propagate.

Exception_Handling_Propagation.ppt Page 18 of 24

IBM Software Group

18

Exception Handling and Propagation © 2006 IBM Corporation

PROPAGATE syntax

MessageSources - This clause select the message trees to be propagated; applies only to the
Compute node (it has no effect in the Database node).

The values that you can specify in MessageSources clauses are:

ENVIRONMENT : InputLocalEnvironment OutputLocalEnvironment
MESSAGE : InputRoot OutputRoot
EXCEPTION : InputExceptionList OutputExceptionList

The MessageSources clause allows you to select the message trees to be propagated. It
applies to the Compute node only.

ENVIRONMENT allows you to select either InputLocalEnvironment or
OutputLocalEnvironment.

MESSAGE allows you to select either the InputRoot or the OutputRoot.

EXCEPTION allows you to select either InputExceptionList or OutputExceptionList.

Exception_Handling_Propagation.ppt Page 19 of 24

IBM Software Group

19

Exception Handling and Propagation © 2006 IBM Corporation

PROPAGATE syntax

Controls - controls for Finalize and Delete; applies only to Compute node (it has no effect in a
Database node)

FINALIZE DEFAULT - fixes header changes, makes Properties folder match headers. The output
message (but not the Environment, Local Environment or Exception List) is finalized before
propagation.
FINALIZE NONE - no finalization takes place

DELETE DEFAULT – the output local environment, message, and exception list are all cleared and
their memory is recovered immediately after propagation.
DELETE NONE – nothing is cleared.

The Controls clause allows you to specify finalization settings and deletion settings.
These controls apply only to the Compute node.

FINALIZE DEFAULT fixes the header changes and makes the Property folder match the
headers. The output message is finalized before propagation.

FINALIZE NONE indicates that no finalization should take place.

DELETE DEFAULT indicates that the output local environment, the message, and the
exception list are all cleared and their memory is recovered immediately after propagation.

DELETE NONE indicates that nothing is cleared.

Exception_Handling_Propagation.ppt Page 20 of 24

IBM Software Group

20

Exception Handling and Propagation © 2006 IBM Corporation

PROPAGATE examples

PROPAGATE TO TERMINAL ‘out1’

ENVIRONMENT OutputLocalEnvironment

MESSAGE OutputRoot

EXCEPTION OutputExceptionList

FINALIZE NONE

DELETE NONE;

PROPAGATE TO LABEL ‘Out1Label’

ENVIRONMENT OutputLocalEnvironment

MESSAGE OutputRoot

EXCEPTION OutputExceptionList

FINALIZE DEFAULT

DELETE DEFAULT;

Here are two simple examples of propagation. The first example is propagating to a
terminal called ‘out1’. The second example is propagating to a label node called
‘Out1Label’.

Exception_Handling_Propagation.ppt Page 21 of 24

IBM Software Group

21

Exception Handling and Propagation © 2006 IBM Corporation

Summary and referencesSummary and references

Section

The last portion of the presentation contains a summary and references.

Exception_Handling_Propagation.ppt Page 22 of 24

IBM Software Group

22

Exception Handling and Propagation © 2006 IBM Corporation

Summary

�Two new ESQL exception handlers are provided

�DECLARE EXIT HANDLER

�DECLARE CONTINUE HANDLER

�A comprehensive set of SQLSTATEs are provided

�The LOG statement can be used to record
information about message processing or the
invocation of an exception handler

�Consider using PROPAGATE statement if the
handler can receive errors from a downstream
node

In summary, two new ESQL exception handlers are provided in V6: the EXIT HANDLER
and the CONTINUE HANDLER. The handlers can be invoked within the same node as
the statement causing the exception, allowing you access to local environmental data.
You can use the LOG statement to record information about message processing or the
invocation of an exception handler. If your handler can be invoked by an ESQL exception
from a downstream node, consider using the enhanced PROPAGATE statement within
your handler to redirect the exception to the appropriate node for additional processing or
recovery.

Exception_Handling_Propagation.ppt Page 23 of 24

IBM Software Group

23

Exception Handling and Propagation © 2006 IBM Corporation

References

�WebSphere Message Broker library:

http://www-
306.ibm.com/software/integration/wbimessagebrok
er/library/

�WebSphere Message Broker Information Center:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6

r0m0/index.jsp

References

Exception_Handling_Propagation.ppt Page 24 of 24

24

IBM Software Group

Exception Handling and Propagation © 2006 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

